

V-Link32 Voice Development Kit

 User's Manual

 Version 1.0

Trademarks：

IBM and PC-AT are the trademarks of International Business Machines Corporation. IBM PC

and PC/XT are the trademarks of International Business Machines Corporation. MS-DOS,

Windows and Windows NT are the trademarks of Microsoft Corporation .

All referred trademarks not listed above are the trademarks of their respective companies.

Copyright 2002, ELETECH ENTERPRISE CO., LTD.
All Rights Reserved.

Table of Contents

Installation .. 1

Install V-Link32 Voice Development Kit ... 1
Hardware Settings ...6
Waveform Driver Supported...6

Introduction ..9
Function Summary ..11
Programming Models ..13

Synchronous Programming..13
Asynchronous Programming .. 13
Polling Model (Asynchronous)..13
Function Callback Model (Asynchronous)..14
Window Callback Model (Asynchronous)...15

Event Management... 19
Termination Event ...19
CST Event ..19

Polling Model ...20
Function Callback Model ..20
Window Callback Model ...21

Function Return Codes ...25
Function Description ...27

adsiCAS ...28
adsiCheckSum..31
adsiRecvFrame ...32
adsiSetParam ...35
adsiXmitFrame ..37
anaGetXmitSlot ...40
anaListen ..41
anaUnlisten... 43
vocAddToConference ..44
vocBreakConference ...45
vocClearDT... 46
vocCloseChn...47
vocCutWaveFile ..48
vocDelFromConference...49
vocDial ...50
vocEnumChn ..53
vocFlashHook ...54
vocGetCallerID..56
vocGetCAR... 58
vocGetChnCaps ..60
vocGetChnID ..61
vocGetChnIO..62
vocGetConfGTD..63
vocGetConfVol ..64
vocGetCurPos...65
vocGetDeviceID ..66
vocGetDT ...67
vocGetGTD... 70
vocGetLastCST...71
vocGetLastErr ...72
vocGetLastEvent ... 73
vocGetLastTerm..74

vocGetSerialNo ...75
vocGetTermDT..76
vocGetVolume...77
vocGetXmitSlot ...78
vocInitDriver.. 79
vocIsLineConnect.. 80
vocListen ..81
vocMakeConference ..83
vocMonitorChn ..86
vocOpenChn...88
vocPlayFile ... 90
vocPlayTone ...93
vocPutSignal...95
vocQueryConfGTD ..97
vocQueryGTD ...98
vocReadDT... 99
vocReadOEMVersion .. 100
vocRecordFile ... 101
vocSetChnIO... 104
vocSetChnParam.. 105
vocSetConfVol .. 107
vocSetCSTMask.. 108
vocSetEventCallback ... 109
vocSetGTDMask ... 110
vocSetHook .. 111
vocSetVolume... 113
vocStopChn.. 114
vocSwitchFax.. 116
vocUnlisten ... 118
vocWaitConfEvent ... 119
vocWaitCST.. 120
vocWaitEvent .. 122
vocWaitRing.. 124
vocWaitRingEx .. 125

CHNMON32 Program ... 127
monShowCST... 128
monShowMSG.. 129

Application Notes .. 130
Caller ID... 132

Overview... 132
FSK .. 132
DTMF.. 133
Enabling the Caller ID feature ... 134
Example .. 134

ADSI (Analog Display Services Interface).. 136
Overview... 136
Frame Format .. 136
FSK Modulation and Demodulation ... 138
Example .. 138

Voice Logging System... 143
Overview... 143
Line Connection ... 143
Programming Tips .. 144
Example .. 145

SCbus Application ... 149
SCbus Concept.. 149

SCbus Product Overview.. 149
SCbus Routing Functions ... 150
Using SCbus Routing Functions .. 151
Examples of SCbus Routing Resources .. 151

Frequently Asked Questions .. 153

 Installation

 1

Installation

Install V-Link32 Development Kit
To install the V-Link32 Development Kit on your computer, you must first insert the V-Link32 Voice Setup
CDROM into your CDROM drive. If the “Autorun” function does not immediately bring you to the
installation screen, please click on Run under the Start menu and type X:\INSTALL.EXE (X
denoting the letter of your CDROM drive) in the Open field. This will bring you to the following
installation screen:

Please select “V-Link32 Drivers (English version)” and click on the button

Installation

 2

At this screen please exit from all other programs you are currently running to ensure the safe and
proper installation of the driver.

Click on the button to continue installation.

 Installation

 3

At this point you can choose the destination directory for your driver program. The default directory
is chosen as C: \V-Link32. If you wish to place the drivers somewhere else, indicate the directory in

the Destination Directory field, or search for another location by clicking on the

button. When you have chosen the directory, click on the button to continue.

Installation

4

In this screen you can choose which Program Folder y ou wish to add the V-Link32 Development Kit

icons to. Click to move onto the hardware configuration screen.

When this screen appears, you will see the default settings according to the pre-specified jumper
settings on your card.
It is advised that you initially use these settings for the installation. If you have already adjusted the
jumper settings for your card, please ensure that the settings displayed here match those on your
card.

 Installation

5

Please move your mouse to the button and click on it to choose the displayed settings
and continue with the installation.
You have now completed the installation procedure and can restart Windows so the new settings
may take effect

To do this, simply move down to the button and click on it.

After installation is completed and the system has been restarted again, User can run
Panel】 and check the 【Audio】 in 【Multimedia 】 to see whether the waveform driver is installed
successfully.

【Control

Lots of items are shown in
this field if voice board is
installed successfully.

If not, please run “Start ”->”Programs”->”V-Link32 Development Kit”->”Voice Settings”->”Configure”.

Installation

 6

Check if the items of “IO Address”, “Interrupt” and “Shared Memory” match with hardware settigns.

Hardware Settings
The default hardware settings for voice boards are:

IO Port Address: 360
Interrupt (IRQ): 5
Memory Frame: D000

If user want to change the hardware settings, please refer to Hardware Installation Manual for the
settings of voice board. After the hardware settings of voice board changed, user also needs to
change the hardware configuration.

For Windows NT, run SystemService program to change the hardware configuration for voice
board.

For Windows 98. use 【System】 of 【Control Panel】 to select the 【Devices】 | 【Media, Audio
and Game Controller】, and then find the 【Plus voice/telephony card】 to change the hardware
configuration.

Waveform Driver Supported

The voice board supports the waveform driver, so user can use the sound recorder program
(sndrec32.exe) of Multimedia to record and play wave files. However the following should also be
noted:

• Please use【Control Panel】, select the 【Audio】 of 【Multimedia】 to check the Preferred devices
of 【Playback】and 【Recording】are the same as below:

 Installation

 7

• To record with Sound Recorder (sndrec32.exe), it is recommended to use format of PCM with

8,000Hz/ 8-Bit/ Mono, and this will save the time to convert the voice format by the system. The
setting can be found in Preferred quality in Audio Properties in Edit of Sound Recorder.

• There have to be no other voice applications running at the same time (voclib32.dll is not

running), otherwise you can not record with the phone set and the voice file played will not be
heard from the speaker.

In order to avoid the Windows system and the voice applications competing for the same
resource of waveform drivers, it is strongly recommended to disa ble the Sounds Events
function (as shown below).

If there are other sound cards in your computer and you select it as the player of the Sounds Events,
then you can start the system to play Sounds Events Functions.

All in all, you can not set the waveform driver of the voice board as the player of the Sounds Events.

To close the Sounds Events of the system, select 【Sounds】 of【Control Panel】and leave the
【Schemes】blank as below:

Select V-Link32
Playback 1

Select V-Link32
Record 1

Select this option.

Installation

 8

(None)

Select “None”
for this field.

 Introduction

 9

Introduction

This document describes the Application Programming Interface (API) of the Plus-series voice
boards. This development kit provides Windows developers with easy-to-use functions and
complete interface to control the voice and telephone system.

File List:
The following files are included in this development kit.

<Driver> Directory:

TPLUSDLL.DLL An installable waveform driver.
TPLUS.SYS An installable wave/telephony kernel mode driver
DSPCMD.400 A download firmware file.
VOCLIB32.DLL A Dynamic Link Library for all the voice and telephony functions.
CHNMON32.DLL A Dynamic Link Library for channel monitor functions.

<Tools> Directory:
DIAG32.EXE An external configuration program to set the API parameters.
VCAPI32.DLL A DLL file for DIAG32 program.
DEVICESERVICE.EXE A program to configure device IO and device removal.
CHNMON32.EXE A program for monitoring channels.
SIMSIGNAL.EXE A simulations program for the generation of signals.

<VC++> Directory For Microsoft Visual C++ programming.
VOCLIB32.H The include file for vocXXX functions which is in <VC++\Inc>

directory.
CHNMON32.H The include file for monXXX functions which is in <VC++\Inc>

directory.
ERRORNO.H The include file for error codes definition which is in <VC++\Inc>

directory.
VOCLIB32.LIB The import library for vocXXX functions which is in <VC++\Lib>

directory. This library is used for Microsoft Visual C++ compiler.
CHNMON32.LIB The import library for monXXX functions which is in <VC++\Lib>

directory. This library is used for Microsoft Visual C++ compiler.

<BCB> Directory For Borland C++ Builder programming.
VOCLIB32.H The include file for vocXXX functions which is in <BCB\Inc> directory.
CHNMON32.H The include file for monXXX functions which is in <BCB\Inc> directory.
ERRORNO.H The include file for error codes definition which is in <VC++\Inc>

directory.
VOCLIB32BC.LIB The import library for vocXXX functions which is in <BCB\Lib>

directory. This library is used for Borland C++ Builder compiler.
CHNMON32BC.LIB The import library for monXXX functions which is in <BCB\Lib>

directory. This library is used for Borland C++ Builder compiler.

<VB> Directory For Microsoft Visual Basic programming.
VOCLIB32.BAS The module file for vocXXX functions which is in <VB\Lib> directory. It

is used for Microsoft Visual Basic programming.

<Delphi> Directory For Borland Delphi programming.
VOCLIB32.PAS The unit file for vocXXX functions which is in <Delphi\Lib> directory. It

is used for Borland Delphi programming.

 Function Summary

 11

Function Summary

Device Management Functions:
Function Description
vocInitDriver() Initializes the voice driver.
vocEnumChn() Retrieves the total channels provided by driver.
vocOpenChn() Opens a free channel.
vocCloseChn() Closes a opened channel.
vocSetChnParam() Sets the channel parameters.
vocSetEventCallback() Redefines the event callback function.
vocGetChnCaps() Retrieves the capability of the specified channel.
vocGetSerialNo() Gets the serial number of the specified channel.
vocGetChnID() Gets the channel number of the specified channel.
vocGetDeviceID() Gets the waveform device ID of the specified channel.
vocPutSignal() Simulate the generation of channel’s signal.

Event Management Functions:
Function Description
vocWaitEvent () Waiting for a termination event block.
vocGetLastEvent() Gets the last termination event block.
vocGetLastTerm() Gets the last termination event code.
vocWaitCST() Waiting for a CST event block.
vocGetLastCST() Gets the last CST event block.
vocSetCSTMask() Sets the CST mask of the specified channel.
vocSetGTDMask() Sets the GTD mask of the specified channel.
vocGetGTD() Retrieves the GTD information of the specified channel.
vocQueryGTD() Retrieves the GTD event for some limited functions.
vocGetLastErr() Gets the last error code.
VocGetTermDT() Gets the terminated digit.

I/O Control Functions:
Function Description
vocWaitRing() Waiting for the ring signal.
vocSetHook() Controls the phone line of the specified channel.
vocClearDT() Clears the channel’s DTMF queue.
vocGetDT() Collects digits from the channel’s DTMF queue.
vocReadDT() Get one digit from channel’s DTMF queue.
vocGetChnIO() Retrieves the I/O status of the specified channel.
vocSetChnIO() Controls the I/O of the specified channel.
vocFlashHook() Makes a hook flash.
vocSwitchFax() Allocates or frees the fax resource of fax daughter board.

Voice Functions:
Function Description
vocPlayFile() Plays back the voice file(s).
vocRecordFile() Records a voice file.
vocPlayTone() Generates tone.
vocGetCurPos() Retrieves the current playback or recording position.
vocCutWaveFile() Truncates the file size.
vocGetVolume() Retrieves the volume level of the specified channel.
vocSetVolume() Sets the volume level of the specified channel.
vocStopChn() Stops the operation of the specified channel.
vocMonitorChn() Monitors a channel from another channel.

Function Summary

 12

Dial Out Functions:
Function Description
vocDial() Dials out a phone number.
vocGetCAR() Retrieves the call analysis result.

Conference Functions:
Function Description
vocMakeConference() Make a conference call.
vocBreakConference() Terminate a conference call.
vocAddToConference() Add a channel to conference.
vocDelFromConference() Delete a channel from conference.
vocGetConfVol() Get volume level in a conference call.
vocSetConfVol() Set volume level in a conference call.
vocWaitConfEvent () Waiting termination event in a conference call.
vocGetConfGTD() Retrieves the GTD information for a conference call.
vocQueryConfGTD() Retrieves the GTD event for a conference call.

ADSI Functions:
Function Description
adsiCAS() Generates a CAS tone and waits for an ACK tone.
adsiRecvFrame() Receives a V.23 FSK frame.
adsiSetParam() Changes channel’s seizure signal and CAS tone settings.
adsiXmitFrame() Transmits a V.23 FSK frame.

 Programming Models

 13

Programming Models

This development kit provides synchronous and asynchronous models for Windows programming.
The characteristics of synchronous and asynchronous programming are described below:

Synchronous Programming
Synchronous programming is characterized by functions that block application execution until the
function completes. For example, if an application plays back a voice file by calling vocPlayFile()
function, the application will not continue execution until the playing is complete and vocPlayFile()
function has terminated. Since application execution is blocked by a function in the synchronous
model, a separate application, thread, or process is needed for each channel.

A sample code of the synchronous model is shown below:

main (…)
{
HCHN hChn;

// Initialize driver
if (vocInitDriver() != E_OK) {
 /* Process error */
}
// Open a channel with synchronous model and get a channel handle on hChn
if (vocOpenChn(&hChn, ANY_CHN, NULL) != E_OK) {
 /* Process error */
}
if (vocPlayFile(hChn, “voice.wav”, 0, 0, 0, DM_SYNC) != E_OK) {
 /* Process error */
}
switch (vocGetLastTerm(hChn)) {
 case EVT_END:
 /* End of playing */
 break;
 case EVT_TERMDT:
 /* Terminated by input digit */
 break;
 :
}
 :
 :
}

Asynchronous Programming
In asynchronous programming, multiple channels can be handled in a single thread rather than in
separate threads as required in synchronous programming. Handling multiple channels in a single
thread results in more efficient use of system resources.

Three types of asynchronous models provides for development include:
l Polling Model
l Function Callback Model
l Window Callback Model

Polling Model (Asynchronous)
In Polling Model, after an asynchronous function is issued, the application polls for and waits for
termination events by calling vocWaitEvent() function. If there is no event, other processing may
take place between polls. If any event is available, the event information is returned in the event
block.

Programming Models

 14

A sample code of the Polling Model is shown below:

main (…)
{
HCHN hChn;

// Initialize driver
if (vocInitDriver() != E_OK) {
 /* Process error */
}
// Open a channel with polling model and a channel handle is returned by hChn
if (vocOpenChn(&hChn, ANY_CHN, NULL) != E_OK) {
 /* Process error */
}

if (vocPlayFile(hChn, “voice.wav”, 0, 0, 0, DM_ASYNC) != E_OK) {
 /* Process error */
}
 :
// Use vocWaitEvent() function to wait for the completion of vocPlayFile()
vocWaitEvent(hChn, &Event, WT_INFINITE);
 :
or
 :
while (1) {
 if (vocWaitEvent(hChn, &Event, 0) == E_OK) break;
 /* Process other things */
 }
 :
 :
}

Function Callback Model (Asynchronous)
In Function Callback Model, after an asynchronous function is issued, the user-defined function
procedure will be called when the termination event occurred. The event information can be
retrieved by calling vocGetLastEvent() function.

The declaration of a callback function procedure is described below:

void evtCallback(HCHN hChn, DWORD dwMsg, DWORD dwUserData,
DWORD dwParam1, DWORD dwParam2);

Parameters
hChn

Specifies the channel handle.
dwMsg

Specifies the message value which is defined by the dwEventMsg parameter of
vocOpenChn() function.

dwUserData
A 32-bit user-instance data which is defined by the dwEventCallbackInst parameter of
vocOpenChn() function.

dwParam1
Reserved.

dwParam2
Reserved.

A sample code of the Function Callback Model is shown below:

 Programming Models

 15

main(…)
{
HCHN hChn;
CBDESC CB;

// Initialize driver
if (vocInitDriver() != E_OK) {
 /* Process error */
}
// Set the CB
CB.dwEventCallback = (DWORD)evtCallBackProc;
CB.dwEventCallbackInst = NULL ;
CB.dwEventFlag = CB_FUNCTION;
CB.dwEventMsg = NULL;
CB.dwCSTCallback = NULL;
CB.dwCSTCallbackInst = NULL;
CB.dwCSTFlag = NULL;
CB.dwCSTMsg = NULL;
// Open a channel with callback model.
if (vocOpenChn(&hChn, ANY_CHN, &CB) != E_OK) {
 /* Process error */
}
if (vocPlayFile(hChn, “voice.wav”, 0, 0, 0, DM_ASYNC) != E_OK) {
 /* Process error */
}
 :
}

void CALLBACK evtCallbackProc(HCHN hChn, DWORD dw Msg, DWORD dwUserData,
 DWORD dwParam1, DWORD dwParam2)
{
EVTBLK Event;

vocGetLastEvent(hChn, &Event);
switch (Event.wTermFun) {
 case CBT_PLAY:
 // The vocPlayFile() function is completed.
 :
 break;
 case CBT_RECORD:
 // The vocRecordFile() function is completed.
 :
 break;
 :
}
}

Window Callback Model (Asynchronous)
In Window Callback Model, after an asynchronous function is issued, the system will send a
message to the window handle when the function is complete. The termination event information
can be retrieved by calling vocGetLastEvent() function.

The declaration of callback function is described below:

void WndProc(HWND hWnd, UNIT Message, UNIT wParam, LONG lParam);

Parameters
hWnd

Specifies the window handle.
Message

Specifies the message value which defined by the dwEventMsg parameter of vocOpenChn()
function.

Programming Models

 16

wParam
This field contains the channel handle.

lParam
Reserved.

A sample code of the Window Callback Model is shown below:

#define WM_TERMNOTIFY (WM_USER+1)

main(…)
{
HWND hWnd;
HCHN hChn;
CBDESC CB;
 :
// Create window
hWnd = CreateWindow(szWndClass,
 “Sample Application”,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL};

// Initialize driver
if (vocInitDriver() != E_OK) {
 /* Process error */
}
// Set the CB
CB.dwEventCallback = (DWORD)hWnd;
CB.dwEventCallbackInst = NULL ;
CB.dwEventFlag = CB_WINDOW;
CB.dwEventMsg = WM_TERMNOTIFY;
CB.dwCSTCallback = NULL;
CB.dwCSTCallbackInst = NULL;
CB.dwCSTFlag = NULL;
CB.dwCSTMsg = NULL;
// Open a channel with callback model.
if (vocOpenChn(&hChn, ANY_CHN, &CB) != E_OK) {
 /* Process error */
}
 :
if (vocPlayFile(hChn, “voice.wav”, 0, 0, 0, DM_ASYNC) != E_OK) {
 /* Process error */
}
 :
}

long PASCAL WndProc(HWND hWnd, UINT Message, UINT w Param, LONG lParam)
{
HCHN hChn;
EVENTBLK Event;

switch (Message) {
 case WM_CREATE:
 :
 break;
 case WM_COMMAND:
 :
 break;
 case WM_TERMNOTIFY:
 hChn = (HCHN) wParam;
 vocGetLastEvent(hChn, &Event);
 switch (Event.wTermFun) {
 case CBT_PLAY:
 // The vocPlayFile() function is completed.
 :
 break;
 case CBT_RECORD:

 Programming Models

 17

 // The vocRecordFile() function is completed.
 :
 break;
 :
 }
 break;
 :
}
}

 Event Management

 19

Event Management

This development kit provides two event types: Termination Event and CST Event.

Termination Event
Every asynchronous function, such as vocPlayFile() or vocRecordFIle(), will generate a
termination event to indicate the function is complete. The termination events can be retrieved by
calling vocWaitEvent(), vocGetLastEvent() or vocGetLastTerm() function.

The defines of termination events are listed below:

Termination Event Code Description

EVT_END x0000 Function is terminated successful.
EVT_ERR XFFFF Function is terminated due to an error. Call vocGetLastErr() to

retrieve the reason of error.
EVT_GTD x1001 Function is terminated due to a GTD tone detected. Call

vocGetGTD() to retrieve the reason of GTD detection.
EVT_MAXDTMF x1002 The maximum number of digits has received.
EVT_IDDTIME x1003 Inter-digit delay time elapsed.
EVT_MAXTIME x1004 Maximum function time elapsed.
EVT_STOP x1005 Stopped by vocStopChn() function.
EVT_TERMDT X1006 A termination digit terminates function. Call vocGetTermDT() to

retrieve the terminated digit.

CST Event
The CST events are generated when the channel status transition is changed. The CST events can
be retrieved by calling vocWaitCST() or vocGetLastCST() function.

The defines of CST events are listed below:

CST Event Meaning
CST_RING A ring signal is detected. The wCSTData contains the number of rings

detected.
CST_DIGIT A DTMF digit is detected. The wCSTData specifies the ASCII digit. (0 – 9, *,

#, A – D)
CST_SILON Silence duration is starting. The wCSTData specifies the interval for non-

silence time. (in 10 ms)
CST_SILOFF Non-silence duration is starting. The wCSTData specifies the interval for

silence time. (in 10 ms)
CST_ONHOOK On-hook state is detected.
CST_OFFHOOK Off-hook state is detected.
CST_LCREV Loop current reversal is detected. The wCSTData contains the reverse

state. (LC_NORM2REV or LC_REV2NORM)
CST_LCDROP Loop current drop is detected.
CST_LCON Loop current is now on . The wCSTData specifies the interval time for loop

current off. (in 10 ms)
CST_LCOFF Loop current is now off. The wCSTData specifies the interval time for loop

current on. (in 10 ms)
CST_RINGON The leading edge of ring signal is detected. The wCSTData specifies the

interval time for ring off. (in 10 ms)
CST_RINGOFF The falling edge of ring signal is detected. The wCSTData specifies the

interval time for ring on. (in 10 ms)

Event Management

 20

interval time for ring on. (in 10 ms)
CST_TONEON A user-defined tone is detected. The wCSTData specifies the user-defined

Tone ID.

The CST events are very useful for some applications to handle the channel status, but it is not
necessary for all applications. In general, applications may ignore the CST events, if they don’t
need to monitor the channel status.

There are three programming models to retrieve the CST event:
l Polling Model
l Function Callback Model
l Window Callback Model

Polling Model
In Polling Model, application polls for CST events by calling vocWaitCST() function.

An example code of the Polling Model is shown below:

main (…)
{
HCHN hChn;
CSTBLK CST;

// Initialize driver
if (vocInitDriver() != E_OK) {
 /* Process error */
}
// Open a channel with polling model and a channel handle is returned by hChn
if (vocOpenChn(&hChn, ANY_CHN, NULL) != E_OK) {
 /* Process error */
}
 :
// Use vocWaitCST() function to retrieve CST events
vocWaitCST(hChn, &CST, WT_INFINITE);
 :
or
 :
while (1) {
 if (vocWaitCST(hChn, &CST, 100) == E_OK) break;
 /* Process other things */
 }
 :
}

Function Callback Model
In Function Callback Model, after the channel status transition is changed, the user-defined
function procedure will be called when a CST event occurred. The event information can be
retrieved by calling vocGetLastCST() function.

The declaration of a callback function procedure is described below:

void cstCallback(HCHN hChn, DWORD dwMsg, DWORD dwUserData,
DWORD dwParam1, DWORD dwParam2);

Parameters
hChn

Specifies the channel handle.
dwMsg

 Event Management

 21

Specifies the message value which is defined by the dwCSTMsg parameter of
vocOpenChn() function.

dwUserData
A 32-bit user-instance data which is defined by the dwCSTCallbackInst parameter of
vocOpenChn() function.

dwParam1
Reserved.

dwParam2
Reserved.

A sample code of the Function Callback Model is shown below:

main(…)
{
HCHN hChn;
CBDESC CB;

// Initialize driver
if (vocInitDriver() != E_OK) {
 /* Process error */
}

// Set the CB
CB.dwEventCallback = NULL;
CB.dwEventCallbackInst = NULL ;
CB.dwEventFlag = NULL;
CB.dwEventMsg = NULL;
CB.dwCSTCallback = (DWORD)cstCallBackProc;
CB.dwCSTCallbackInst = NULL;
CB.dwCSTFlag = CB_FUNCTION;
CB.dwCSTMsg = NULL;

// Open a channel with callback model.
if (vocOpenChn(&hChn, ANY_CHN, &CB) != E_OK) {
 /* Process error */
}
 :
}

void CALLBACK cstCallbackProc(HCHN hChn, DWORD dw Msg, DWORD dwUserData,
 DWORD dwParam1, DWORD dwParam2)
{
CSTBLK CST;

vocGetLastCST(hChn, &CST);
switch (CST.wStat us) {
 case CST_RING:
 :
 break;
 case CST_DIGIT:
 :
 break;
 :
}
}

Window Callback Model
In Window Callback Model, after the channel status transition is changed, the system will send a
message to the window handle when a CST event occurred. The event information can be retrieved
by calling vocGetLastCST() function.

The declaration of callback function is described below:

Event Management

 22

void WndProc(HWND hWnd, UNIT Message, UNIT wParam, LONG lParam);

Parameters
hWnd

Specifies the window handle.
Message

Specifies the message value which defined by the dwCSTMsg parameter of vocOpenChn()
function.

wParam
This field contains the channel handle.

lParam
Reserved.

An sample code of the Window Callback Model is shown below:

#define WM_CSTNOTIFY (WM_USER+2)

main(…)
{
HWND hWnd;
HCHN hChn;
CBDESC CB;

 :
// Create window
hWnd = CreateWindow(szWndClass,
 “Sample Application”,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL};

// Initialize driver
if (vocInitDriver() != E_OK) {
 /* Process error */
}
// Set the CB
CB.dwEventCallback = NULL;
CB.dwEventCallbackInst = NULL ;
CB.dwEventFlag = NULL;
CB.dwEventMsg = NULL;
CB.dwCSTCallback = (DWORD)hWnd;
CB.dwCSTCallbackInst = NULL;
CB.dwCSTFlag = CB_WINDOW;
CB.dwCSTMsg = WM_CSTNOTIFY;
// Open a channel with callback model.
if (vocOpenChn(&hChn, ANY_CHN, &CB) != E_OK) {
 /* Process error */
}
 :
}

long PASCAL WndProc(HWND hWnd, UNIT Message, UINT w Param, LONG lParam)
{
HCHN hChn;
CSTBLK CST;

switch (Message) {
 case WM_CREATE:
 :
 break;
 case WM_COMMAND:
 :

 Event Management

 23

 break;
 case WM_CSTNOTIFY:
 // Process CST event
 hChn = (HCHN) wParam;
 vocGetLastCST(hChn, &CST);
 :
 break;
 :
}
}

 Function Return Codes

 25

Function Return Codes

This section lists the return codes that returned from the function calls.

Value Code Description
E_OK X0000 Function is successful.
E_ERR XFFFF Function error.
E_CHNERR X1001 Invalid channel handle.
E_NOMEM X1002 Insufficient memory.
E_BUSY X1003 Channel is in use.
E_NOFILE X1004 Voice file is not found.
E_READERR X1005 Fail to read voice file.
E_WRTERR X1006 Fail to write voice file.
E_FMTERR X1007 Unknown media format.
E_CREATEERR X1008 Fail to create voice file.
E_DRVERR X1009 Fail to initialize the device driver.
E_BADPARAM X100A Invalid input parameters.
E_TIMEOUT X100B The time-out interval lapses.
E_ALLOCATED X100C The specified channel has been allocated.
E_CONFERR X100D Invalid conference handle.
E_CHNINUSE X100E Channel was in conference already.
E_TOOMANYCHN X100F Too many channels in one conference call.
E_CONFFULL X1010 Out of conference handle.
E_SYSERR X1011 Fail to synchronize.
E_NOCHN X1012 No channel available to be used.
E_IOERR X1013 Fail to communicate with driver.
E_RECINUSE X1014 The channel has been already monitored by another channel.
E_FUNERR X1015 No conference call function supported.

 Function Description

 27

Function Description

This paragraph contains an alphabetical list of the API functions. The documentation for each
function contains a line illustrating correct syntax, a statement about the function's purpose, a
description of its input parameters, and a description of its return value. The documentation for
some functions contains additional, important information that an application developer needs in
order to use the function.

adsiCAS()

 28

adsiCAS

This function generates a CPE Alert Signal (CAS) to the remote device and waits for an
acknowledge signal (ACK Tone).

Syntax
WORD adsiCAS (

HCHN hChn,
DWORD dwMaxTime,
WORD wAckTones,
WORD wMode
);

Parameters
hChn

Identifies the channel handle.
dwMaxTime

Specifies the time-out interval, in milliseconds. If this parameter is WT_INFINITE, the function’s
time-out interval never elapses. If the interval elapses and no acknowledge signal is detected, an
EVT_MAXTIME event will be generated.

wAckTones
Specifies the acknowledge signals (ACK tones) to receive, in which the reception of any DTMF
tone will terminate this function. This parameter can be a combination of the following values:
DT_0 : Digit 0. DT_6 : Digit 6. DT_A : Digit A.
DT_1 : Digit 1. DT_7 : Digit 7. DT_B : Digit B.
DT_2 : Digit 2. DT_8 : Digit 8. DT_C : Digit C.
DT_3 : Digit 3. DT_9 : Digit 9. DT_D : Digit D.
DT_4 : Digit 4. DT_S : Digit *. DT_ALL : For all digits.
DT_5 : Digit 5. DT_P : Digit #.

wMode
Specifies the running mode and options. This parameter can be a combination of the following
values:
Choose one only:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Choose one or more:
Value Meaning
DM_NOGTD Set this option to ignore GTD events. The default mode will detect GTD events.

If this option is specified, applications can call vocQueryGTD() function to
retrieve the GTD events.

DM_NOCAS Don’t generate a CAS tone, just waiting for ACK tone.
DM_NOCLR Don’t clear the channel’s DTMF queue before waiting ACK tone.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_BUSY Channel is in use.
E_CHNERR Invalid channel handle.

Termination Events:
The possible termination events for this function are listed below:

 adsiCAS()

 29

Event Meaning
EVT_END End of CAS tone playing and an ACK tone is detected successfully. If

multiple digits is defined for wAckTones, call vocGetTermDT() to get the
terminated digit (i.e. ACK tone).

EVT_MAXTIME Waiting time is reached and no ACK tone is detected.
EVT_GTD GTD Tone detected. Call vocGetGTD() function to get detail information.
EVT_STOP Channel stopped by vocStopChn() function.

Remarks
This function is used to communicate with the remote devices. The more detail information about
ADSI protocol, please refer to the ADSI section in Application Notes.

The default Call Alert Signal (CAS Tone) is a dual-frequency tone (2130 Hz and 2750 Hz) which
can be programming by calling the adsiSetParam() function. The Acknowledge signal (ACK
Tone) is specified by the wAckTones, and it is always one of the DTMF digits.

When the adsiCAS() function is executing, all the input digits will be read out from the channel’s
DTMF queue including the terminated digit (ACK tone). In order to prevent from getting an
unexpected ACK tone, the adsiCAS() function will clear the DTMF queue before waiting for an
ACK tone. If applications allow an ACK tone occurred before the adsiCAS() function call,
specifies the wMode with DM_NOCLR option.

This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will ret urn a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

Example

Example 1: Using function in synchronous model.
HCHN hChn;

// Generates a CAS and waits for ACK tone (DTMF digit “A”)
If (adsiCAS(hChn, 3000, DT_A, DM_SYNC) != E_OK) {
 // Process error.
 }
switch (vocGetLastTerm()) {
 case EVT_END:
 break;
 case EVT_MAXTIME:
 // Time-out, no ACK tone found.
 goto Error;
 break;
 case EVT_GTD:
 // Caller has hanged up the line already.
 goto HangUp;
 break;
 default:
 goto Error;
 break;
 }

adsiCAS()

 30

Example 2: Using function in asynchronous model.
HCHN hChn;
EVTBLK Event;

// Generates a CAS and waits for ACK tone (DTMF digit “A”)
If (adsiCAS(hChn, 3000, DT_A, DM_ASYNC) != E_OK) {
 // Process error.
 }

// Waiting for termination event.
vocWaitEvent(hChn, &Event, WT_INFINITE);

switch (vocGetLastTerm()) {
 case EVT_END:
 break;
 case EVT_MAXTIME:
 // Time-out, no ACK tone found.
 goto Error;
 break;
 case EVT_GTD:
 // Caller has hanged up the line already.
 goto HangUp;
 break;
 default:
 goto Error;
 break;
 }

 adsiCheckSum()

 31

adsiCheckSum

This function computes the check sum byte for a ADSI message.

Syntax
BYTE adsiCAS (

LPSTR pFrame,
WORD wLength
);

Parameters
PFrame

Points to a buffer where contains the ADSI message.
wLength

Specifies the total length of buffer to compute the check sum.

Return Values
Returns a check sum byte for input frame message.

Remarks
This function is used to compute the check sum byte for a ADSI message. The check sum byte is
a two’s complement sum of all bytes starting from the ADSI message up to the end of the
message block.

Example

#define DATA_LEN 20

typedef struct tagADSIFrame {
 BYTE bType;
 BYTE bLength;
 BYTE bData[DATA_LEN];
 BYTE bCS;
 } ADSIFRAME;

ADSIFRAME Frame;
WORD wMsgSize;

Frame.bType = 0xAA;
Frame.bLength = DATA_LEN;
// Fill data into Frame.bData;

Frame.bCS = adsiCheckSum(&Frame, sizeof(ADSIFRAME) -1); // -1 is used to exclude the CheckSum byte.
// Frame is ready to transmit.
AdsiXmitFrame(hChn, &Frame, sizeof(ADSIFRAME), DM_SYNC);
 :
 :

// After a frame received
adsiRecvFrame(hChn, &Frame, sizeof(ADSIFRAME), &wMsgSize, 5000, DM_RAW|DM_SYNC);
 :
 :
if (adsiCheckSum(&Frame, sizeof(ADSIFRAME)-1) != Frame.bCS) // -1 is used to exclude the CheckSum byte.
 {
 // Error on Check Sum
 }
 :
 :

adsiRecvFrame()

 32

adsiRecvFrame

This function receives a V.23 FSK frame in raw data format.

Syntax
WORD adsi RecvFrame (

HCHN hChn,
LPSTR pBuf,
WORD wBufSize,
LPWORD pRecvSize,
DWORD dwMaxTime,
WORD wMode
);

Parameters
hChn

Identifies the channel handle.
pBuf

Points to a buffer to receive the message data. The length of input buffer must be greater than
the wBufSize value to prevent from an unexpected error. The received data only contains the
message data exculding the seizure and mark signals. Application should verify the Check Sum
field of message data to confirm the received data.

wBufSize
Specifies the maximum number of bytes to receive the message data. The valid value is from 1
to 256 bytes.

pRecvSize
Points to a word buffer, which will be filled with the length of received message including the
check sum byte.

dwMaxTime
Specifies the time-out interval, in milliseconds. If this parameter is WT_INFINITE, the function’s
time-out interval never elapses. If the interval elapses and no frame is received, an
EVT_MAXTIME event will be generated.

wMode
Specifies the running mode and options. This parameter can be a combination of the following
values:
Choose one only:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Choose one or more:
Value Meaning
DM_NOGTD Set this option to ignore GTD events. The default mode will detect GTD events.

If this option is specified, applications can call vocQueryGTD() function to
retrieve the GTD events.

DM_RAW Don’t check the CheckSum byte which is located at the last byte of received
message.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_BUSY Channel is in use.
E_CHNERR Invalid channel handle.

 adsiRecvFrame ()

 33

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_END A frame is detected sucessfully.
EVT_ERR A frame is detected but the check sum is error. The input buffer (pBuf) will

still contains the received message and the pRecvSize also be filled with
the length of the received message. Driver will not generate this event if
DM_RAW option is specified.

EVT_MAXTIME Waiting time is reached and no frame is detected.
EVT_GTD GTD Tone detected. Call vocGetGTD() function to get detail information .
EVT_STOP Channel stopped by vocStopChn() function.

Remarks
The definition of received message is depending on ADSI protocol. In general, the received
message consists of Message Type, Message Length, Message Data and Check Sum byte for
ADSI application:

Message
Type

Message
Length

Message
Data

Check Sum

To ensure the correction of received data, application can call adsiCheckSum() function to
verify the Check Sum byte which is usually located at the last byte of received message.

This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

Example

Example 1: Using function in synchronous model.

HCHN hChn;
Char Buf[100];
WORD wMsgSize;

// Receive a V.23 FSK frame. Function will be stopped by either 10 seconds reaches, or any frame detected.
if (adsiRecvFrame(hChn, Buf, sizeof(Buf), &wMsgSize, 10000, DM_SYNC) != E_OK) {
 // Process error
}

switch(vocGetLastTerm()) {
 case EVT_END:
 // A frame detected.
 break;
 case EVT_ERR:
 // A frame detected, but check sum is error.
 break;
 case EVT_MAXTIME:

adsiRecvFrame()

 34

 //Time out and no frame detected.
 goto error;
 break;
 case EVT_GTD:
 //Caller have alreay disconnected the line or some signals is detected.
 goto HangUp;
 break;
 default:
 goto error;
 break;
 }

Example 2: Using function in asynchronous model.

HCHN hChn;
Char Buf[100];
EVTBLK Event;
WORD wMsgSize;

// Receive a V.23 FSK frame. Function will be stopped by either 10 seconds reaches, or any frame detected.
if (adsiRecvFrame(hChn, Buf, sizeof(Buf), &wMsgSize, 10000, DM _ASYNC) != E_OK) {
 // Process error
}

// Waiting for termination event.
vocWaitEvent(hChn, &Event, WT_INFINITE);

switch(Event.wEvent) {
 case EVT_END:
 // A frame detected.
 break;
 case EVT_ERR:
 // A frame detected, but check sum is error.
 break;
 case EVT_MAXTIME:
 //Time out and no frame detected.
 goto error;
 break;
 case EVT_GTD:
 //Caller have alreay disconnected the line or some signals is detected.
 goto HangUp;
 break;
 default:
 goto error;
 break;
 }

 adsiSetParam()

 35

adsiSetParam

This function sets the channel’s ADSI parameters.

Syntax
WORD adsiSetParam (

HCHN hChn,
WORD wParam,
DWORD dwData
);

Parameters

hChn
Identifies the channel handle.

wParam
Specifies the ADSI parameter to change. This parameter can be one of the following values:
Values Meaning

ADSI_RECV_SEIZURE Set the alternating seizure bits for ADSI frame receiving.
ADSI_XMIT_SEIZURE Set the alternating seizure bits for ADSI frame transmission.
ADSI_CAS_DURATION Set the CAS tone duration.
ADSI_CAS_FREQ1 Set the 1st frequency of CAS tone.
ADSI_CAS_FREQ2 Set the 2nd frequency of CAS tone.
ADSI_CAS_AMP1 Set the amplitude for the 1st frequency.
ADSI_CAS_AMP2 Set the amplitude for the 2nd frequency.

dwData
Contains the data associated with wParam. This field has a different definition for each channel
parameter:
wParam dwData

ADSI_RECV_SEIZURE Specifies the at least number of alternating seizure bits for ADSI
frame detection. The default value is 50. (i.e. 50 alternating 0 and 1
bits to indicate the beginning of a ADSI frame.) The seizure count
must be a multiple of ten (i.e. 10, 20, 30 or 300). To prevent from
receiving the seizure signal, set this value to zero.

ADSI_XMIT_SEIZURE Specifies the at least number of alternating seizure bits for ADSI

frame transmission. The default value is 50. (i.e. 50 alternating 0
and 1 bits will automatically be added preceding transmit a ADSI
frame.) The seizure count must be a multiple of ten (i.e. 10, 20, 30 or
300). To prevent from generating the seizure signal, set this value to
zero.

ADSI_CAS_DURATION Specifies the duration of CAS tone and time unit is 10 ms. The

default value is 10. (i.e. 100ms tone duration)

ADSI_CAS_FREQ1 Specifies the 1st frequency of CAS tone. The valid value is from 200

- 4000 and unit is Hz. The default value is 2130 Hz.

ADSI_CAS_FREQ2 Specifies the 2nd frequency of CAS tone. If the CAS tone is a

dual -frequency, specifies the 2nd frequency for this field. If the CAS
tone is a single frequency, fill this field with zero. The valid value is
from 200 - 4000 and unit is Hz. The default value is 2750 Hz.

ADSI_CAS_AMP1 Specifies the amplitude for the 1st frequency. The valid value is from

-40 to 0 and unit is dB. The default value is –9 dB.

adsiSetParam()

 36

ADSI_CAS_AMP2 Specifies the amplitude for the 2nd frequency. The valid value is from

-40 to 0 and unit is dB. The default value is -11dB.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_ERR Requested function is not supported.

Example:
HCHN hChn;

// Set the IDD time to 2 seconds
if (adsiSetParam(hChn, ADSI_RECV_SEIZURE, 50) != E_OK) {
 // Process error,
}

// Set the frequeny of CAS tone
adsiSetParam(hChn, ADSI_CAS_FREQ1, 2300);
adsiSetParam(hChn, ADSI_CAS_FREQ2, 2850);

 adsiXmitFrame ()

 37

adsiXmitFrame

This function transmits a message in V.23 FSK frame.

Syntax
WORD adsiXmitFrame (

HCHN hChn,
LPSTR pBuf,
WORD wBufSize,
WORD wMode
);

Parameters
hChn

Identifies the channel handle.
pBuf

Points to a buffer where contains the message to transmit. When the frame is transmitting, driver
will automatically add the seizure and mark signals to the beginning of FSK frame. The contents
of the message prepared by the application should include message type, message length,
message data and check sum byte for ADSI protocol.

wBufSize
Specifies the number of bytes to transmit (i.e. the length of message including message type,
message length, message data and check sum byte).

wMode
Specifies the running mode and options. This parameter can be a combination of the following
values:
Choose one only:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Choose one or more:
Value Meaning
DM_NOGTD Set this option to ignore GTD events. The default mode will detect GTD events.

If this option is specified, applications can call vocQueryGTD() function to
retrieve the GTD events.

DM_RAW Don’t add the checksum byte into pBuf.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_BUSY Channel is in use.
E_CHNERR Invalid channel handle.
E_NOMEM Not enough memory to allocate.

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_END The frame data is transmitted.
EVT_ERR I/O Device error. Calls vocGetLastErr() to get detail error code.
EVT_GTD GTD Tone detected. Call vocGetGTD() function to get detail information.
EVT_STOP Channel stopped by vocStopChn() function.

adsiXmitFrame()

 38

Remarks
This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

Example

Example 1: Using function in synchronous model.

HCHN hChn;
char Frame[100];

// Transmit a frame.
if (adsiXmitFrame(hChn, Frame, sizeof(Frame), DM_SYNC) != E_OK) {
 //Process error;
 }
switch (vocGetLastTerm()) {
 case EVT_END:
 break;
 case EVT_GTD:
 // Caller has hanged up the line already.
 goto HangUp;
 break;
 default:
 goto Error;
 break;
 }

Example 2: Using function in asynchronous model.

HCHN hChn;
EVTBLK Event;
char Frame[100];

// Transmit a frame.
if (adsiXmitFrame(hChn, Frame, sizeof(Frame), DM_ASYNC) != E_OK) {
 //Process error;
 }

// Waiting for termination event.
vocWaitEvent(hChn, &Event, WT_INFINITE);

switch (Event.wEvent) {
 case EVT_END:
 break;
 case EVT_GTD:
 // Caller has hanged up the line already.
 goto HangUp;
 break;
 default:
 goto Error;
 break;
 }

 adsiXmitFrame ()

 39

anaGetXmitSlot()

 40

anaGetXmitSlot

This function returns SCbus time slot number of analog transmit channel. It returns the SCbus
time slot information contained in a TSINFO structure that includes the number of the SCbus
time slot connected to the voice transmit channel on a PLUS-4LVSC board.

Syntax
WORD vocGetXmitSlot (

HCHN hChn,
LPTSINFO lpTSInfo
);

Parameters
hChn

Identifies the channel handle.
lpTSInfo

Points to a TSINFO structure to receive timeslot number in pTsArray. The TSINFO structure
has the following form:

typedef struct tagTSINFO {
 DWORD nTsCnt;
 long *pTsArray;
} TSINFO;

The detail description of this structure is listed below:
nTsCnt

This parameter must be initialized with the number of SCbus time slots, typically 1.
pTsArray

This parameter must be initialized with a pointer to a valid array. Upon return from the
function, the array will contain the number (between 0 and 1023) of the SCbus time slot on
which the analog channel transmits.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_BADPARAM Invalid input parameter. The nTsCnt parameter is not equal to 1.
E_BADTYPE Invalid channel type (voice, analog, fax …etc)
E_FUNERR Function is not supported in current bus configuration.

Remarks
A analog channel on a PLUS-4LVSC board can transmit on only one SCbus time slot.

Example
HCHN hChn;
TSINFO TsInfo;

TsInfo.nTsCnt = 1; //the number of timeslot to get is one
if (anaGetXmitSlot(hChn, &TsInfo) == E_OK) {
 printf(“\n\rThe transmit time slot for analog=%d”, TsInfo.pTsArray[0]);
}

 anaListen()

 41

anaListen

This function connects analog listen channel to SCbus time slot. This function uses the
information stored in the TSINFO structure to connect the receive analog (listen) channel on a
PLUS-4LVSC board to an SCbus time slot.

Syntax
WORD anaListen (

HCHN hChn,
LPTSINFO lpTSInfo
);

Parameters
hChn

Identifies the channel handle.
lpTSInfo

Points to a TSINFO structure to specify the time slot information.. The TSINFO structure has the
following form:

typedef struct tagTSINFO {
 DWORD nTsCnt;
 long *pTsArray;
} TSINFO;

The detail description of this structure is listed below:
nTsCnt

This parameter must be set to 1.
pTsArray

This parameter must be initialized with a pointer to a valid array. The first element of this
array must contain a valid SCbus time slot number (between 0 and 1023) which was
obtained by issuing an vocGetXmitSlot() function. Upon return from this function, the
analog receive channel will be connected to the SCbus time slot.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_BADPARAM Invalid input parameter. The nTsCnt parameter is not equal to 1.
E_BADTYPE Invalid channel type (voice, analog, fax …etc)
E_FUNERR Function is not supported in current bus configuration.

Remarks
This function sets up a half-duplex connection. For a full-duplex connection, the receive (listen)
channel of the other device must be connected to the analog transmit channel.

Although multiple analog channels may listen (be connected) to the same SCbus time slot, the
receive of a analog channel can connect to only one SCbus time slot.

Calling the anaListen() function to connect to a different SCbus time slot will automatically break
an existing connection. Thus, when changing connections, you need not call the vocUnlisten()
function.

Example
HCHN hChn;
TSINFO TsInfo;
TsInfo.nTsCnt = 1;
TsInfo.pTsArray[0] = 512; // if the timeslot going to listen is 512

anaListen()

 42

if (anaListen(hChn, &TsInfo) == E_OK) {
 printf(“\n\rAnalog channel is ready to listen time slot 512!”);
}

 anaUnlisten()

 43

anaUnlisten

This function disconnects analog receive channel from SCbus. This function disconnects the
analog receive (listen) channel on a PLUS-4LVSC board from the SCbus.

Syntax
WORD anaUnlisten (

HCHN hChn
);

Parameters
hChn

Identifies the channel handle.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_FUNERR Function is not supported in current bus configuration.

Remarks
Calling the anaListen() function to connect to a different SCbus time slot will automatically break
an existing connection. Thus, when changing connections, you need not call the vocUnlisten()
function.

Example
HCHN hChn;
if (anaUnlisten(hChn) == E_OK) {
 printf(“\n\rAnalog channel is no longer listening!”);
}

vocAddToConference()

 44

vocAddToConference

This function adds a channel to the specified conference call.

Syntax
WORD vocAddToConference(

HCONF hConf,
HCHN hChn
);

Parameters
hConf

Identifies the conference handle.
hChn

Identifies the channel handle to add.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_CONFERR Invalid conference handle.
E_CHNINUSE One of the input channels is in use for other conference call.
E_TOOMANYCHN Too many channels in a conference handle.
E_FUNERR No conference call function supported.
E_NOMEM Insufficient memory.

Example
HCONF hConf;
HCHN hChn;

if (vocAddToConference(hConf, hChn) != E_OK) {
 /* Process error */
}

 vocBreakConference()

 45

vocBreakConference

This function terminates a conference call.

Syntax
WORD vocBreakConference(

HCONF hConf
);

Parameters

hConf
Identifies the conference handle.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CONFERR Invalid conference handle.

Example
HCONF hConf;

if (vocBreakConference(hConf) != E_OK) {
 /* Process error */
}

vocClearDT()

 46

vocClearDT

This function clears the DTMF queue of the specified channel.

Syntax
WORD vocClearDT(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Example
HCHN hChn;

if (vcoClearDT(hChn) != E_OK) {
 // Process error
}

 vocCloseChn()

 47

vocCloseChn

This function closes an opened channel.

Syntax
WORD vocCloseChn(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
If a channel handle opened by the vocOpenChn() function is no more in use, application should
call this function to release the channel for other applications .

Example
HCHN hChn;

if (vocCloseChn(hChn) != E_OK) {
 // Process error
}

vocCutWaveFile()

 48

vocCutWaveFile

This function truncates the file size with input time period.

Syntax
LONG vocCutWaveFile(

LPSTR szVocFile,
WORD wCutTime
);

Parameters
szVocFile

Points to an ASCIIZ string named the voice file to truncate.
wCutTime

Specifies the time period to truncate from the ending of voice file. (Time units is ms)

Return Values
If function was successful, this function returns the remaining time (in seconds) to play of the
truncated file. Otherwise, it returns E_ERR.

Example
// Cut off the voice file with 5 seconds
if (vcoCutWaveFile(”wellcome.wav”, 5000) == E_ERR) {
 // Process error
}

 vocDelFromConference()

 49

vocDelFromConference

This function removes a channel from the specified conference call .

Syntax
WORD vocDelFromConference (

HCONF hConf,
HCHN hChn
);

Parameters
hConf

Identifies the conference handle.
hChn

Identifies the channel handle to remove.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_CONFERR Invalid conference handle.

Example
HCONF hConf;
HCHN hChn;

if (vocDelFromConference(hConf, hChn) != E_OK) {
 /* Process error */
}

vocDial()

 50

vocDial

This function dials an ASCIIZ string on the specified channel and optionally monitors the call.

Syntax
WORD vocDial(

HCHN hChn,
LPSTR szPhoneNo,
WORD wRingCnt,
WORD wMode
);

Parameters
hChn

Identifies the channel handle.
szPhoneNo

Points to a null-terminated character string that specifies the dial string .
wRingCnt

Specifies the number of ringback tone to wait after dialed.
wMode

Specifies the running mode and dialing options. This parameter can be a combination of the
following values:
Choose one only:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Choose oen or more:
Value Meaning
DM_PULSE Sets this option to use pulse dialing. The default dialing type is touch-tone

dialing (DTMF).
DM_BLIND Sets this option for a blind dialing. The blind dialing option will cause the driver

don't check the dial tone before call out the phone number. The default dialing
mode will check the dial tone. If no dial tone is defined by the DIAG32.EXE
program, any tone on the line will be recognized as a dial tone, To have precise
dial tone detection, please define the dial tone frequency to the “Call Progress
Monitor Settings” of DIAG32.EXE program.

DM_NOCPA Sets this option to disable the call progress analysis. The default mode is to
enable the call progress analysis.

DM_20PPS Sets this option for a 20 PPS pulse dialing. The default pulse dialing is 10 PPS.
This option must be set with DP_PULSE option.

DM_INTLCPA Sets this option to force the call progress analysis to use intelligent mode.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_BUSY Channel is in use.
E_CHNERR Invalid channel handle.

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_END function completed. Call vocGetCAR() function to get detail information of

 vocDial()

 51

Call Analysis Result.
EVT_STOP Channel stopped by vocStopChn() function.
EVT_ERR I/O Device error. Call vocGetLastErr() function to get detail error code.

Remarks
This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

This function will automatically take the channel off-hook before dialing, if it is in the On-hook
State. When the function is complete, the calling channel will remain in the Off-hook State.

All the call analysis parameters and dial parameters are configured by the “Call Progress Monitor
Settings” function of DIAG32.EXE program.

The valid characters for pulse dialing and touch-tone dialing are listed below: (characters are
case sensitive)

Valid characters for tone dialing:

0 - 9, *, #, A, B, C, D
Valid characters for pulse dialing:

0 - 9
Control characters:

Control Characters Description
, Pause. The pause time is set by DIAG32.EXE.

& or ! Make a hook flash. The flash time is set by DIAG32.EXE.
T Change dial mode to tone dialing.
P Change dial mode to pulse dialing. (10 PPS)
J Change dial mode to pulse dialing. (20 PPS)

W Waiting for a dial tone.
~ Call a pager.

To make a call from the inside PBX, the dialing string should have a prefix string “9,” or “0,”
before phone number.

To call a pager, the dialing string should have the following format:

PagerNumber~DisplayNumber

The control character “~” is used to detect the pager tone. To make this function work properly,
please define the pager tone at the “Call Progress Monitor Settings” function of DIAG32.EXE
program.

vocDial()

 52

The control character “W” is used to detect the dial tone. If DIAG32.EXE program don’t define
dial tone, any tone on the line will be recognized as a dial tone. To have precise dial tone
detection, please define the dial tone frequency to the “Call Progress Monitor Settings” of
DIAG32.EXE program.

Example

Example 1: Using function in synchronous model.

HCHN hChn;
CAR Car;

// Call 2195499 with call progress monitor
if (vocDial(hChn, “ 2195499”, 5, DM_SYNC) != E_OK) {
 // Process error
}
// Call vocGetCAR to get Call Analysis Result.
vocGetCAR(hChn, Car);
switch (Car.wCarType) {
 case CAR_CONNECT:
 :
 break;
 case CAR_NOANSWER:
 :
 break;
 case CAR_BUSY:
 :
 break;
 :
 }

Example 2: Using function in asynchronous model.

HCHN hChn;
EVTBLK Event;

// Call 2195499 with call progress monitor
if (vocDial(hChn, “ 2195499”, 5, DM_ASYNC) != E_OK) {
 // Process error
}
// Waiting for termination event.
vocWaitEvent(hChn, &Event, WT_INFINITE);

// Call vocGetCAR to get Call Analysis Result.
vocGetCAR(hChn, Car);
switch (Car.wCarType) {
 case CAR_CONNECT:
 :
 break;
 case CAR_NOANSWER:
 :
 break;
 case CAR_BUSY:
 :
 break;
 :
 }

 vocEnumChn()

 53

vocEnumChn

This function returns the total channels provided by device driver.

Syntax
WORD vocEnumChn();

Return Values
The return value specifies the total channels provided by device driver.

Example
WORD wChnCnt = vocEnumChn();
printf(“There are %d channels in your system”, wChnCnt);

vocFlashHook()

 54

vocFlashHook

This function flashes the hook state of the specified channel.

Syntax
WORD vocFlashHook(

HCHN hChn,
WORD wTime,
WORD wMode
);

Parameters

hChn
Identifies the channel handle.

wTime
Specifies the flash time, the time unit is ms.

wMode
Specifies the running mode. This parameter can be one of the following values:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_BUSY Channel is in use.
E_CHNERR Invalid channel handle.

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_END Flash hook function completed.

Remarks
This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

Example

Example 1: Using function in synchronous model.
HCHN hChn;

 vocFlashHook()

 55

// Make a hook flash. The flash time is 200ms.
if (vocFlashHook(hChn, 200, DM_SYNC) != E_OK) {
 // Proces s error
}

Example 2: Using function in asynchronous model.
HCHN hChn;
EVTBLK Event;

// Process error
// Make a hook flash. The flash time is 200ms.
if (voc FlashHookl(hChn, 200, DM_ASYNC) != E_OK) {
 // Process error
}
//Waiting for termination event.
vocWaitEvent(hChn, &Event, WT_INFINITE);

vocGetCallerID()

 56

vocGetCallerID

This function returns the Caller ID message.

Syntax
WORD vocGetCallerID (

HCHN hChn,
WORD wType,
LPSTR pMsg
);

Parameters

hChn
Identifies the channel handle.

wType
Specifies the message type to be returned. This parameter can be one of the following values:
Values Meaning
CID_CALLID Get the caller’s phone number.

pMsg
Pointers to a buffer to receive the requested Caller ID message which is null terminated. The
format of returned data has a different definition for each message type:

CID_ALL Retrieve all caller ID information sent from the CO. The maximum length is

258 bytes; includes header and length byte at the beginning.

CID_GENERAL The returned null-terminated ASCIIZ string contains the date and time (20

bytes - formatted with “/” and “:” characters; padded with spaces), caller’s
phone number or reason for absence (20 bytes - padded with spaces),
caller name or reason for absence (variable length ≥ 0; no padded)
01234567890123456789 01234567890123456789 01234567890123456789

Date and Time
(20 bytes)

Phone Number
(20 bytes)

Name
(variable length)

03/02b11:20bbbbbbbbb 22195499bbbbbbbbbbbb MICHELLEbLEE∅

03/02b11:20bbbbbbbbb 22195499bbbbbbbbbbbb P∅

03/02b11:20bbbbbbbbb Pbbbbbbbbbbbbbbbbbbb P∅

03/02b11:20bbbbbbbbb Pbbbbbbbbbbbbbbbbbbb ∅

03/02b11:20bbbbbbbbb Obbbbbbbbbbbbbbbbbbb ∅

b=Blank ∅ =Null P=Private O=Unavailable

CID_CALLID Get the caller’s phone number. A null-terminated ASCIIZ string will be
returned. The maximum length of caller’s phone number is 300
(MAX_CID_LENGTH) bytes.

pMsg
Pointers to a buffer to receive the requested Caller ID message. The format of returned data has
a different definition for each message type.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
This function works only for voice boards that support Caller ID features.

 vocGetCallerID()

 57

Example
HCHN hChn;
char buf[MAX_CID_LENGTH];

if (vocGetCallerID(hChn, CID_CALLERID, buf) == E_OK) {
 // Process error
}
//A Caller ID string is returned.
printf(“\n\rCaller ID = %s”, buf);

vocGetCAR()

 58

vocGetCAR

This function retrieves the call analysis result of the specified channel.

Syntax
WORD vocGetCAR(

HCHN hChn,
LPCAR lpCAR
);

Parameters
hChn

Identifies the channel handle.
lpCAR

Points to a CAR structure to receive the call analysis result. The CAR structure has the following
form:

typedef struct tagCAR {
 WORD wCarType;
 DWORD dwAnsSize;
 WORD wConnectType;
} CAR;

The detail description of this structure is listed below:
wCarType

Specifies the call analysis result. This parameter can be one of the following values:
Value Meaning
CAR_CONNECT Indicates the line is connected or the dialing function is completed.
CAR_NOANSWER No answer.
CAR_BUSY Line is busy.
CAR_NODIALTONE No dial tone detected.
CAR_FAX Called is a fax machine.
CAR_MODEM Called is a modem unit.
CAR_SWERR Internal error.
CAR_HWERR Internal error.

dwAnsSize
Specifies the answer size if line is connected.

wConnectType
Specifies the reason for connect. The connection can be one of the following reasons:
Value Meaning
CON_CADENCE Out of tone cadence.
CON_NOISE Unknown tone detected.
CON_LCDROP Loop current drop detected.
CON_LCREV Loop current reversal detected.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Example
HCHN hChn;
CAR CARInfo;

if (vocDial(hChn, “2195499”, 5, DM_SYNC) != E_OK) {
 // Process error
}

 vocGetCAR()

 59

// Call vocGetCAR to get Call Analysis Result.
if (vocGetCAR(hChn, &CARInfo) != E_OK) {
 // Process error
}
switch (Car.wCarType) {
 case CAR_CONNECT:
 :
 break;
 case CAR_NOANSWER:
 :
 break;
 case CAR_BUSY:
 :
 break;
 :
 }

vocGetChnCaps()

 60

vocGetChnCaps

This function retrieves the channel capability.

Syntax
WORD vocGetChnCaps(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
Returns the channel capability. This return value can be a combination of the following values:
Value Meaning
CAP_LOCRECORD Indicates the channel can record voice from the local phone set.
CAP_SCANFAX Indicates the channel can support scan fax function. This function only

supplies the local phone jack a DC power. User can connect the line of
fax machine to the local phone jack and press the start button of fax
machine to start transmitting fax. At the same time, a fax function should
be invoked to receive fax from this channel.

CAP_VOLUME Indicates the channel supports volume control.
CAP_BRIDGE Indicates the channel supports conference function.
CAP_MASTER Indicates the channel is a master board.
CAP_CALLERID Indicates the channel supports caller ID detection (only for 4R or 8R

card).
CAP_HANDSET Indicates the channel support handset detection (only for 4R or 8R card).

Example
HCHN hChn;
WORD wChnCaps;

wChnCaps = vocGetChnCaps(hChn);
if (wChnCaps&CAP_LOCRECORD) {
 // channel supports record function
}
if (wChnCaps&CAP_SCANFAX) {
 // channel supports scan fax function
}
if (wChnCaps&CAP_VOLUME) {
 // channel supports volume control function
}

 vocGetChnID()

 61

vocGetChnID

This function returns the channel number of the specified channel handle.

Syntax
WORD vocGetChnID(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
Returns the channel number. The channel number starts from 0.

Remarks
This function does not check the input parameter. Unexpected errors will occur if an invalid
channel handle is input.

Example
WORD wChnID;
HCHN hChn;

vocOpenChn(&hChn, ANY_CHN, NULL);
wChnID=vocGetChnID(hChn);

vocGetChnIO()

 62

vocGetChnIO

This function retrieves the I/O status of the specified channel.

Syntax
WORD vocGetChnIO(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
The return value is a combination of the following values:
Value Meaning
ST_SPKON Indicates speaker is now on, otherwise the speaker is off.
ST_OFFHOOK Indicates channel is now off-hook, otherwise is on-hook (Hang up).
ST_AUTORSTON Indicates the auto-reset function is enabled.
ST_TONE Indicates the channel is not in silence now.
ST_HANDSET Indicates the handset is pick up (only for 4R or 8R card).

Example
HCHN hChn;
WORD wChnIOStatus;

wChnIOStatus = vocGetChnIO(hChn);
if (wChnIOStatus & ST_SPKON) {
 // The speaker is now on.
}
else { // The speaker is now off.
}

 vocGetConfGTD ()

 63

vocGetConfGTD

This function retrieves the detailed information of EVT_GTD event for a conference handle.

Syntax
WORD vocGetConfGTD(

HCONF hConf,
LPGTDDESC lpGTDDesc
);

Parameters
hConf

Identifies the conference handle.
lpGTDDesc

Points to a GTDDESC structure to receive information of the detected signal. The GTDDESC
structure has the following form:

typedef struct tagGTDDesc {
 WORD wSignalType;
 WORD wDetectTime;
 WORD wToneID;
} GTDDESC;

The detail description of this structure is listed below:
wSignalType

Specifies the signal type. This parameter can be one of the following values:
Value Meaning
SN_SIL Indicates a long silence period is detected.
SN_NONSIL Indicates a long non-silence period is detected.
SN_HANGUP Indicates a hang-up tone is detected.
SN_LCDROP Indicates a loop current drop is detected.
SN_LCREV Indicates a loop current reversal is detected.
SN_SIT1 Indicates a SIT1 tone is detected.
SN_SIT2 Indicates a SIT2 tone is detected.
SN_SIT3 Indicates a SIT3 tone is detected.
SN_USER A user-defined tone is detected and the wToneID contains the Tone ID.

wDetectTime
Specifies the time period to detect signal. (Time units is ms)

wToneID
This field contains the Tone ID if the wSignalType field is SN_USER.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
All the GTD settings are defined by the “Caller Hang-up Settings” of DIAG32.EXE program. If the
voice application is running under a different environment, user can redefine the GTD settings
via DIAG32 program, and don’t need to change the program code.

Example
HCONF hConf;
GTDDESC GTD;
if (vocGetConfGTD(hConf, >D) != E_OK) {
 // Process error
}

vocGetConfVol()

 64

vocGetConfVol

This function returns the current volume level of the specified conference call.

Syntax
WORD vocGetConfVol(

HCONF hConf
);

Parameters

hConf
Identifies the conference handle.

Return Values
The return value is from 0 to 15.

Example
HCONF hConf;

printf(“Current volume level is %u”, vocGetConfVol(hConf)) ;

 vocGetCurPos()

 65

 vocGetCurPos

This function retrieves the current play ing or recording position.

Syntax
WORD vocGetCurPos(

HCHN hChn,
LPPOSINFO lpPosInfo
);

Parameters
hChn

Identifies the channel handle.
lpPosInfo

Points to a POSINFO structure to receive information of the current playing or recording position.
The POSINFO structure has the following form:

typedef struct tagPosInfo {
 DWORD dwPos;
 WORD wTime;
 WORD wSample;
} POSINFO;

The detail description of this structure is listed below:
dwPos

Specifies the current position in byte.
wTime

Specifies the current position in second.
wSample

Specifies the current sampling rate.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_FUNERR No voice is playing or recording.

Example
HCHN hChn;
POSINFO PosInfo;
EVTBLK Event;

// Play back the “voice.wav” file from the starting point
if (vocPlayFile(hChn, “voice.wav”, 0L, 0, DM_ASYNC) != E_OK) {
 // Process error
}

/* Use vocWaitEvent() to wait for the completion of vocPlayFile() */
while (1) {
 if (vocWaitEvent(hChn, &Event, 100) != E_OK) break;
 vocGetCurPos(hChn, &PosInfo);
 printf(“\rPlaying %lu second(s)”, PosInfo.wTime);
}

vocGetDeviceID()

 66

vocGetDeviceID

This function retrieves the waveform device ID of the specified channel.

Syntax
WORD vocGetDeviceID(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
Returns the waveform device ID.

Remarks
This waveform device ID returned by this function is used for waveOutOpen() and
waveInOpen() functions which are described by Windows Multimedia Reference. The voice
driver of this voice board is a waveform device, programmers can also use the Low-Level
Waveform Audio Services to play back voice and record voice.

Example
WORD wDevID;
HCHN hChn;
HWAVE hWave;
WAVEFORMATEX PcmFmt;

wDeviceID = vocGetDeviceID(hChn);
waveOutOpen(&hWave, wDevID, &PcmFmt, 0, 0, WAVE_MAPPED|CALLBACK_FUNCTION);
// hWave is an WAVEOUT handle now and available for other waveOutXXX function calls.

 vocGetDT()

 67

 vocGetDT

This function collects digits from the channel’s DTMF queue.

Syntax
WORD vocGetDT(

HCHN hChn,
LPSTR lpBuf,
WORD wMaxCnt,
DWORD dwMaxTime,
WORD wTermDTs,
WORD wMode
);

Parameters
hChn

Identifies the channel handle.
lpBuf

Points to a buffer to receive the digits from DTMF queue. A NULL-terminated ASCIIZ string will
be returned. The valid DTMF characters are 1,2,3,4,5,6,7,8,9,0,*,#,A,B,C,D. The length of input
buffer must be larger than (number of wMaxCnt) + 1.

wMaxCnt
Specifies the maximum number of digits to receive. If the number of received digits is greater
than this parameter, an EVT_MAXDTMF event will be generated.

dwMaxTime
Specifies the time-out interval, in milliseconds. If this parameter is zero, this function will put all
the received digits into buffer and return immediately. If this parameter is WT_ INFINITE, the
function's time-out interval never elapses. If the interval elapses and no enough digit is received,
an EVT_MAXTIME event will be generated.

wTermDTs
Specifies the termination digits, in which the reception of any digit will terminate this function.
This parameter can be a combination of the following values:
DT_0 : Digit 0. DT_6 : Digit 6. DT_A : Digit A.
DT_1 : Digit 1. DT_7 : Digit 7. DT_B : Digit B.
DT_2 : Digit 2. DT_8 : Digit 8. DT_C : Digit C.
DT_3 : Digit 3. DT_9 : Digit 9. DT_D : Digit D.
DT_4 : Digit 4. DT_S : Digit *. DT_ALL : For all digits.
DT_5 : Digit 5. DT_P : Digit #. DT_NONE: No termination digit.

wMode
Specifies the running mode. This parameter can be a combination of the following va lues:
Choose one only:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Choose one or more:
Value Meaning
DM_NOGTD Set this option to ignore GTD event detection, the default mode will detect GTD

event. If this option is specified, applications can call vocQueryGTD() function
to retrieve the GTD event.

DM_DISTURB A disturb tone will play automatically while function is waiting for user’s DTMF
input. To use this option, the specified channel must not in the playing or
recording mode.

vocGetDT()

 68

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_BUSY Channel is in use.
E_CHNERR Invalid channel handle.

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_MAXDTMF Maximum number of DTMF digits received.
EVT_IDDTIME Inter-digit delay time is reached.
EVT_MAXTIME Maximum function time is reached.
EVT_TERMDT Terminated by input digit. Call vocGetTermDT() function to get the

terminated digit.
EVT_GTD GTD Tone detected. Call vocGetGTD() function to get detail information.
EVT_STOP Stopped by vocStopChn() function.

Remarks
If DM_DISTURB option is selected, The volume level of disturb tone can be adjusted by
changing the parameter of DSPCMD.INI file, which is in Windows directory. The format is as
follow:

[Voclib]
DisturbVol = xx

The xx value specifies the volume level of disturb tone. The valid value is from 0 to 40, and
default is 30. The value 1 is for the maximum volume level and value 40 is for the minimum
volume level of disturb tone. Set this value to 0 to disable the disturb function.

If the DTMF detection does not work properly for the long distance phone calls, try to increase
the DisturbVol value to generate the disturb tone with a lower volume.

This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

Example

Example 1: Using function in synchronous model.

HCHN hChn;
Char Buf[11];

// Waiting for 10 digits in 5 seconds and define # is the termination digit.
if (vocGetDT(hChn, Buf, 10, 5000, DT_ P, DM_SYNC) != E_OK) {
 // Process error
}

 vocGetDT()

 69

Example 2: Using function in asynchronous model.
HCHN hChn;
Char Buf[11];
EVTBLK Event;

// Waiting for 10 digits in 5 seconds and define # is the termination digit.
if (vocGetDT(hChn, Buf, 10, 5000, DT_ P, DM_ASYNC) != E_OK) {
 // Process error
}
//Waiting for termination event.
vocWaitEvent(hChn, &Event, WT_INFINITE);

vocGetGTD()

 70

 vocGetGTD

This function retrieves the detail information of EVT_GTD event.

Syntax
WORD vocGetGTD(

HCHN hChn,
LPGTDDESC lpGTDDesc
);

Parameters
hChn

Identifies the channel handle.
lpGTDDesc

Points to a GTDDESC structure to receive information of the detected signal. The GTDDESC
structure has the following form:

typedef struct tagGTDDesc {
 WORD wSignalType;
 WORD wDetectTime;
 WORD wToneID;
} GTDDESC;

The detail description of this structure is listed below:
wSignalType

Specifies the signal type. This parameter can be one of the following values:
Value Meaning
SN_SIL Indicates a long silence period is detected.
SN_NONSIL Indicates a long non-silence period is detected.
SN_HANGUP Indicates a hang-up tone is detected.
SN_LCDROP Indicates a loop current drop is detected.
SN_LCREV Indicates a loop current reversal is detected.
SN_SIT1 Indicates a SIT1 tone is detected.
SN_SIT2 Indicates a SIT2 tone is detected.
SN_SIT3 Indicates a SIT3 tone is detected.
SN_USER A user-defined tone is detected and the wToneID contains the Tone ID.

wDetectTime
Specifies the time period to detect signal. (Time units is ms)

wToneID
This field contains the Tone ID if the wSignalType field is SN_USER.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
All the GTD settings are defined by the “Caller Hang-up Settings” of DIAG32.EXE program. If the
voice application is running under a different environment, user can redefine the GTD settings
via DIAG32 program, and don’t need to change the program code.

Example
HCHN hChn;
GTDDESC GTD;
if (vocGetGTD(hChn, >D) != E_OK) {
 // Process error
}

 vocGetLastCST()

 71

vocGetLastCST

This function returns the last CST (Channel Status Transition) of the specified channel.

Syntax
WORD vocGetLastCST(

HCHN hChn,
LPCSTBLK pCst
);

Parameters
hChn

Identifies the channel handle.
pCst

Points to a CSTBLK structure to receive the channel status information. The CSTBLK structure
has the following form:

typedef struct tagCstBlk {
 HCHN hChn;
 WORD wStatus;
 DWORD dwData;
 BYTE bReserved[12];
} CSTBLK;

The detail information of this structure is described at vocWaitCST() function.

Return Values
Returns zero (E_OK) if a CST event was received successful. Otherwise, it returns a nonzero
value and the possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
This function is used to get the last channel status . The status transition event can be masked on
or off by calling vocSetCSTMask() function.

Example
HCHN hChn;
CSTBLK CST;

if (vocWaitCST(hChn, &CST, WT_INFINITE) != E_OK) {
 // Process error

vocGetLastErr()

 72

vocGetLastErr

This function returns the last error code of the specified channel.

Syntax
WORD vocGetLastErr(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
This function returns the last error code value. See the definition of Function Error Code for
detail.

Example
HCHN hChn;

printf(“\n\rThe last Error code is %x”, vocGetLastErr(hChn));

 vocGetLastEvent()

 73

vocGetLastEvent

This function returns the last termination event block of the specified channel.

Syntax
WORD vocGetLastEvent(

HCHN hChn,
LPEVTBLK pEvent
);

Parameters
hChn

Identifies the channel handle.
pEvent

Points to an EVTBLK structure to receive the event information. The EVTBLK structure has the
following form:

typedef struct tagEvtBlk {
 HCHN hChn;
 WORD wEvent;
 WORD wTermFun;
 BYTE bReserved[12];
} EVTBLK;

The detail description of this structure is described at vocWaitEvent() function.

Return Values
Returns zero (E_OK) if the last termination event was received successful. Otherwise, it returns
a nonzero value and the possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
See the definition of Termination Event for detail.

Example
HCHN hChn;
EVTBLK Event;

vocGetLastEvent(hChn, &Event);
printf(“\n\rThe terminate event code : %u”, Event.wEvent);

vocGetLastTerm()

 74

vocGetLastTerm

This function returns the last termination event of the specified channel.

Syntax
WORD vocGetLastTerm(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
This function returns a termination event code to indicate the reason for the last termination on
the channel. The termination event code is set when an I/O function completed. See the
definition of termination event for detail.

Example
HCHN hChn;

printf(“\n\rThe terminate event code : %u”, vocGetLastTerm(hChn));

 vocGetSerialNo()

 75

 vocGetSerialNo

This function returns the serial number of the specified channel.

Syntax
DWORD vocGetSerialNo(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
Returns the serial number of the specified channel. The return value will be zero if no voice
board is found or invalid channel handle is specified.

Example
HCHN hChn;
DWORD dwChnSerNo;

if ((dwChnSerNo = vocGetSerialNo(hChn)) == 0) {
 printf(“\n\rNo voice board found or invalid channel handle is specified .”);
}
else {
 printf(“\n\rThe serial number of this channel is %lu”, dwChnSerNo);
}

vocGetTermDT()

 76

vocGetTermDT

This function returns the last terminated digit of the specified channel.

Syntax
BYTE vocGetTermDT(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
This function returns the last terminated digit. The valid DTMF characters are 1, 2, 3, 4, 5, 6, 7, 8,
9, 0, *, #, A, B, C, D.

Example
HCHN hChn;

printf(“\n\rThe terminated digit is %c”, vocGetTermDT(hChn));

 vocGetVolume()

 77

vocGetVolume

This function retrieves the current output/input volume level of the specified channel.

Syntax
WORD vocGetVolume(

HCHN hChn,
WORD wType
);

Parameters
hChn

Identifies the channel handle.
wType

Specifies the volume type. This parameter can be one of the following values:
Value Meaning
OUT_VOLUME To retrieve the current output volume level of voice playing.
IN_VOLUME To retrieve the current input volume level of voice recording.

Return Values
The return value is from 0 to 15.

Example
HCHN hChn;
WORD wVolIn, wVolOut;

wVolIn = vocGetVolume(hChn, IN_VOLUME);
wVolOut = vocGetVolume(hChn, OUT_VOLUME);
printf(“\n\rChannel volume level In Volume=%u, Out Volume=%u”, wVolIn, wVolOut);

vocGetXmitSlot()

 78

vocGetXmitSlot

This function returns SCbus time slot number of voice transmit channel. It returns the SCbus
time slot information contained in a TSINFO structure that includes the number of the SCbus
time slot connected to the voice transmit channel on a PLUS-4LVSC board.

Syntax
WORD vocGetXmitSlot (

HCHN hChn,
LPTSINFO lpTSInfo
);

Parameters
hChn

Identifies the channel handle.
lpTSInfo

Points to a TSINFO structure to receive timeslot number in pTsArray. The TSINFO structure
has the following form:

typedef struct tagTSINFO {
 DWORD nTsCnt;
 long *pTsArray;
} TSINFO;

The detail description of this structure is listed below:
nTsCnt

This parameter must be initialized with the number of SCbus time slots, typically 1.
pTsArray

This parameter must be initialized with a pointer to a valid array. Upon return from the
function, the array will contain the number (between 0 and 1023) of the SCbus time slot on
which the voice channel transmits.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_BADPARAM Invalid input parameter. The nTsCnt parameter is not equal to 1.
E_BADTYPE Invalid channel type (voice, analog, fax …etc)
E_FUNERR Function is not supported in current bus configuration.

Remarks
A voice channel on a PLUS-4LVSC board can transmit on only one SCbus time slot.

Example
HCHN hChn;
TSINFO TsInfo;

TsInfo.nTsCnt = 1; //the number of timeslot to get is one
if (vocGetXmitSlot(hChn, &TsInfo) == E_OK) {
 printf(“\n\rThe transmit time slot for voice=%d”, TsInfo.pTsArray[0]);
}

 vocInitDriver()

 79

vocInitDriver

This function initializes the voice driver.

Syntax
WORD vocInitDriver();

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_DRVERR Fail to initialize driver.
E_NOCHN No channel found.
E_NOMEM Not enough memory.

Remarks
Application should call this function before call other APIs.

Example
if (vocInitDriver() != E_OK) {
 // Process error
}

vocIsLineConnect()

 80

vocIsLineConnect

This function is used to detect whether a CO line or PBX line is connected to the specified
channel.

Syntax
BOOL vocIsLineConnect(

HCHN hChn
);

Parameters
hChn

Identifies the channel handle.

Return Values
Returns TRUE if the CO or PBX line is connected. Otherwise, it returns FALSE.

Remarks
To on-hook the specified channel before call this function. This function will take about 2
seconds to detect the line status, and the channel will be in the on-hook state after function
completed.

Example
if (vocIsLineConnect()) {
 printf(“\n\rThe CO line is connected”);
}
else {
 printf(“\n\rThe CO line is not connected”);
}

 vocListen()

 81

vocListen

This function connects voice listen channel to SCbus time slot. This function uses the
information stored in the TSINFO structure to connect the receive voice (listen) channel on a
PLUS-4LVSC board to an SCbus time slot.

Syntax
WORD vocListen (

HCHN hChn,
LPTSINFO lpTSInfo
);

Parameters
hChn

Identifies the channel handle.
lpTSInfo

Points to a TSINFO structure to specify the time slot information.. The TSINFO structure has the
following form:

typedef struct tagTSINFO {
 DWORD nTsCnt;
 long *pTsArray;
} TSINFO;

The detail description of this structure is listed below:
nTsCnt

This parameter must be set to 1.
pTsArray

This parameter must be initialized with a pointer to a valid array. The first element of this
array must contain a valid SCbus time slot number (between 0 and 1023) which was
obtained by issuing an anaGetXmitSlot() function. Upon return from this function, the voice
receive channel will be connected to the SCbus time slot.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_BADPARAM Invalid input parameter. The nTsCnt parameter is not equal to 1.
E_BADTYPE Invalid channel type (voice, analog, fax …etc)
E_FUNERR Function is not supported in current bus configuration.

Remarks
This function sets up a half-duplex connection. For a full-duplex connection, the receive (listen)
channel of the other device must be connected to the voice transmit channel.

Although multiple voice channels may listen (be connected) to the same SCbus time slot, the
receive of a voice channel can connect to only one SCbus time slot.

Calling the vocListen() function to connect to a different SCbus time slot will automatically break
an existing connection. Thus, when changing connections, you need not call the vocUnlisten()
function.

Example
HCHN hChn;
TSINFO TsInfo;
TsInfo.nTsCnt = 1;
TsInfo.pTsArray[0] = 512; // if the timeslot going to listen is 512

vocListen()

 82

if (vocListen(hChn, &TsInfo) == E_OK) {
 printf(“\n\rVoice channel is ready to listen time slot 512!”);
}

 vocMakeConference()

 83

vocMakeConference

This function makes a conference call for all the input channels.

Syntax
WORD vocMakeConference(

LPHCHN lphChnList,
WORD wVolume,
LPHCONF lphConf,
WORD wMode
);

Parameters
lphChnList

Points to a buffer to specify all the channel handles, which are included in a conference call. This
input array is terminated with zero.

wVolume
Specifies the default volume level for this conference call. The valid value is from 0 to 15. The
recommended volume level is 8, and 15 for the biggest level.

lphConf
Points to a buffer to receive the conference handle.

wMode
Specifies the options. This parameter can be a combination of the following va lues:
Value Meaning
DM_NOGTD Set this option to ignore GTD events. The default mode will detect GTD events.

If this option is specified, applications can call vocQueryConfGTD() function to
retrieve the GTD events.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_CONFFULL All conference handles are in use.
E_CHNINUSE One of the input channels is in use for other conference call.
E_TOOMANYCHN Too many channels in a conference handle.
E_FUNERR No conference call function supported.
E_SYSERR Failed to synchronize.
E_NOMEM Insufficient memory.

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_END End of conference call, stopped by vocBreakConference().
EVT_GTD GTD Tone detected. Call vocGetConfGTD() function to get detailed

information.

Remarks
This function will be running in asynchronous mode only.
It will return zero (E_OK) to indicate the function has initiated successfully, and it will generate a
termination event to indicate the function has completed. The possible termination events are
listed above. A returned nonzero value by this function indicates an error occurred.

The maximum number of channels in a conference call is 4 channels. If a conference handle has

vocMakeConference()

 84

occupied a channel, then the channel could not become a member of another conference call
before it is removed from the original conference handle

The wVolume parameter of vocMakeConference() function defines the default volume level of
the specified conference call. This volume level can be adjusted by the vocGetConfVol() and
vocSetConfVol() functions.

Once a conference call was made, application is able to call vocAddToConference() or
vocDelFromConference() function to add or remove a channel. All conference calls made by
vocMakeConference() function could be terminated by the vocBreakConference() function or
a GTD event is detected.

The channels in conference call could not be used to play file, record file or dialing out
until it is removed from the conference call.

Example

There are two ways to make a conference call:

Example 1: Call this function with a channel handle list.
HCHN ChnList[3];
HCHN hChn1, hChn2;
HCONF hConf;

if (vocOpenChn(&hChn1, ANY_CHN, NULL) != E_OK) {…/*Error Process*/}
if (vocOpenChn(&hChn2, ANY_CHN, NULL) != E_OK) {…/*Error Process*/}

// To make a conference call for channel 1 and 2
ChnList[0] = hChn1, ChnList[1] = hChn2, ChnList[2] = 0;
if (vocMakeConference(ChnList, 8, &hConf, 0) != E_OK) {…/*Error Process*/};
 :
 :
while (1) {
if (vocWaitConfEvent(hConf, &wEvent, 500) == E_OK) {//wait event for 500ms
 switch (wEvent) {
 case EVT_END: … //terminated by vocBreakConference()
 case EVT_GTD:vocGetConfGTD(hConf, >DEvt); //get detailed GTD event
 default:
 break;
}
if (vocReadDT(hChn1)==’0’) vocBreakConference(hConf); //stop conference if channel1 detect DTMF 0 code
}

Example 2: Call this function with a null handle list.

Call the vocMakeConference() function with a null channel handle list and then call the
vocAddToConference() or vocDelFromConference() function to add or remove from conference
members.

HCHN ChnList[4];
HCHN hChn1, hChn2, hChn3;
HCONF hConf;

if (vocOpenChn(&hChn1, ANY_CHN, NULL) != E_OK) {…/*Error Process*/}
if (vocOpenChn(&hChn2, ANY_CHN, NULL) != E_OK) {…/*Error Process*/}
if (vocOpenChn(&hChn3, ANY_CHN, NULL) != E_OK) {…/*Error Process*/}

// To make a null conference call
if (vocMakeConference(NULL, 8, &hConf, 0) != E_OK) {…/*Error Process*/};
// Add channel 1 to the conference call
if (vocAddToConference(hConf, hChn1) != E_OK) { …/*Error Process*/};
// Add channel 2 to the conference call

 vocMakeConference()

 85

if (vocAddToConference(hConf, hChn2) != E_OK) {…/*Error Process*/};
// Add channel 3 to the conference call
if (vocAddToConference(hConf, hChn3) != E_OK) { …/*Error Process*/};
// Remove channel 1 from the conference call
if (vocDelFromConference(hConf, hChn1) != E_OK) {…/*Error Process*/};
 :
 :
if (vocWaitConfEvent(hConf, &wEvent, INFINITE) == E_OK) {
 switch (wEvent) {
 case EVT_END: …//terminated by vocBreakConference()
 case EVT_GTD: vocGetConfGTD(hChn1, >DEvt); //Get detailed GTD event
 }
}

vocMonitorChn()

 86

vocMonitorChn

This function is used to monitor a channel.

Syntax
WORD vocMonitorChn(

HCHN hChn,
HCHN hChnBeMonitored,
WORD wMode
);

Parameters

hChn
Identifies the channel handle to monitor.

hChnBeMonitored
Identifies the channel handle to be monitored.

wMode
Specifies the running mode and recording mode . This parameter can be a combination of the
following values:
Choose one only:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Choose one only:
Value Meaning
VM_ADPCM Uses OKI ADPCM format for voice recording. This value cannot be used with

VM_MULAW and VM_WAVE options.
VM_MULAW Uses the µ-law PCM format for voice recording. This value cannot be used with

VM_ADPCM and VM_WAVE options.
VM_WAVE Uses the multimedia wave format for voice recording. This value cannot be used

with VM_ADPCM and VM_MULAW options.

Choose one or more:
Value Meaning
VM_SR6 Uses 6KHz sampling rate for voice recording. If this value is not specified, the

default sampling rate is 8KHz.
DM_NOGTD Set this option to ignore GTD events. The default mode will detect GTD events.

If this option is specified, applications can call vocQueryGTD() function to
retrieve the GTD events.

Return Values
Returns zero (E_OK) if a terminatio n event was received successful. Otherwise, it returns a
nonzero value and the possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_BUSY The specified monitor channel is busy, or the specified channel has been

already monitored by another channel.

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_ERR I/O Device error. Call vocGetLastErr() function to get detail error code.
EVT_GTD GTD Tone detected. Call vocGetGTD() function to get detail information.
EVT_STOP Channel stopped by vocStopChn() function.

 vocMonitorChn ()

 87

Remarks
This function is used to monitor the channel (hChnBeMonitored), and meanwhile play back the
recording data at the specified channel (hChn). If program turns on the speaker of hChn
channel, a real-time (0.5 second delay) conversation of hChnBeMonitored channel can be
heard from the speaker of hChn channel.

When the monitor function is working, the hChn channel cannot play file, record file or dial out
until the monitor function is completed. The hChnBeMonitored channel also cannot play file or
dial out, but it can call vocRecordFile() function to record voice file during the monitor time.

To stop the monitor function, calls the vocStopChn() function. It will not stop the recording
function of the hChnBeMonitored channel if it is in the progress of recording file

This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

Example

Example 1: Using function in synchronous model.

HCHN hChn, hChnBeMonitored;
if (vocMonitorChn ((hChn, hChnBeMonitored , DM_SYNC) != E_OK) {
 // Process error
}

Example 2: Using function in asynchronous model.
HCHN hChn, hChnBeMonitored;
EVTBLK Event;
if (vocMonitorChn((hChn, hChnBeMonitored , DM_ASYNC) != E_OK) {
 // Process error
}
// Waiting for termination event.
vocWaitEvent(hChnMon, &Event, WT_INFINITE);

vocOpenChn()

 88

vocOpenChn

This function opens a free channel handle for operation.

Syntax
WORD vocOpenChn(

LPHCHN phChn,
WORD wChnID,
LPCBDESC pCallBack
);

Parameters

phChn
Points to a channel handle. This location will be filled with a channel handle identifying the open
channel device. Use this handle to identify the channel device when calling other functions.

wChnID
Identifies the channel number to open. The valid channel number starts from 0. If the ANY_CHN
is specified, driver will choose the first free channel.

pCallBack
Points to a CBDESC structure to specify the callback information. If no callback function is
required, this value can be zero. The CBDESC structure has the following form:

typedef struct tagCBDesc {
 DWORD dwEventCallback ;
 DWORD dwEventCallbackInst;
 DWORD dwEventFlag;
 DWORD dwEventMsg;
 DWORD dwCSTCallback;
 DWORD dwCSTCallbackInst;
 DWORD dwCSTFlag;
 DWORD dwCSTMsg;
} CBDESC;

The detail description of this structure is listed below:
dwEventCallback

This field contains a window handle or address of a fixed callback function to be called
during a termination event occurs. If no callback function is required, this value can be zero.
For more information on the callback function, please see Programming Models section.

dwEventCallbackInst
This field contains a user-instance data passed to the function callback mechanism for
termination event. This parameter is not used with the window callback mechanism.

dwEventFlag
Specifies the event flag for opening the channel. This field can be one of the following
values:
Values Meaning
CB_FUNCTION The dwEventCallback parameter is a callback procedure address.
CB_WINDOW The dwEventCallback parameter is a window handle.
CB_POLLING No callback mechanism. This is the default setting. Applcations can call

vocWaitEvent() function to wait for a termination event.
dwEventMsg

Defines the message value for termination event.
dwCSTCallback

This field contains a window handle or address of a fixed callback function to be called
during a channel status event occurs.. If no callback function is required, this value can be
zero. For more information on the callback function, please see Programming Models
section.

 vocOpenChn()

 89

dwCSTCallbackInst
This field contains a user-instance data passed to the function callback mechanism for CST
event. This parameter is not used with the window callback mechanism.

dwCSTFlag
Specifies the CST flag for opening the channel. This field can be one of the following values:
Values Meaning
CB_FUNCTION The dwCSTCallback parameter is a callback procedure address.
CB_WINDOW The dwCSTCallback parameter is a window handle.
CB_POLLING No callback mechanism. This is the default setting. Applications can call

vocWaitCST() function to wait for a CST event.
dwCSTMsg

Defines the message value for CST event.

Return Values
Returns zero (E_OK) if the function was successful and the channel handle is filled in phChn.
Otherwise, it returns a nonzero value and the possible error returns are:
Value Meaning
E_NOCHN No channel available to be used .
E_ALLOCATED The specified channel is already allocated.

Remarks
The function is used to allocate a channel and set the programming model for it. There are two
programming models in application development: Synchronous and Asynchronous. The
programming model of each channel can be changed by calling vocSetEventCallback()
function.

Example
To open a channel without callback programming model:

HCHN hChn;
if (vocOpenChn(&hChn, ANY_CHN, NULL) != E_OK) {
 // Process error
}

To open a channel with callback programming model:
HCHN hChn;
CBDESC CB;

// Set the CB
CB.dwEventCallback = (DWORD)vocCallBackProc;
CB.dwEventCallbackInst = NULL ;
CB.dwEventFlag = CB_FUNCTION;
CB.dwEventMsg = NULL;
CB.dwCSTCallback = NULL;
CB.dwCSTCallbackInst = NULL;
CB.dwCSTFlag = NULL;
CB.dwCSTMsg = NULL;

// Open a channel with callback model.
if (vocOpenChn(&hChn, ANY_CHN, &CB) != E_OK) {
 // Process error
}

vocPlayFile()

 90

vocPlayFile

This function plays back one or more recorded voice file on the specified channel.

Syntax
WORD vocPlayFile(

HCHN hChn,
LPSTR szVocFile,
DWORD dwStartPos,
WORD wTermDTs,
WORD wMode
);

Parameters
hChn

Identifies the channel handle.
szVocFile

Points to a null-terminated character string named a voice file or voice filelist to play. The voice
filelist is a character string containing lots of voice file separated by semi-comma. For example,
the input string “VocFile1;VocFile2;VocFile3” will guide this function to play the voice files
VocFile1, VocFile2 and VocFile3 sequentially. All voice files of the filelist must have the same
media format and the maximum size of filelist is 5120 bytes.

DwStartPos
Specifies the starting position to play back.

WTermDTs
Specifies the termination digits, in which the reception of any digit will terminate this function.
This parameter can be a combination of the following values:
DT_0 : Digit 0. DT_6 : Digit 6. DT_A : Digit A.
DT_1 : Digit 1. DT_7 : Digit 7. DT_B : Digit B.
DT_2 : Digit 2. DT_8 : Digit 8. DT_C : Digit C.
DT_3 : Digit 3. DT_9 : Digit 9. DT_D : Digit D.
DT_4 : Digit 4. DT_S : Digit *. DT_ALL : For all digits.
DT_5 : Digit 5. DT_P : Digit #. DT_NONE: No termination digit.

wMode
Specifies the running mode and options. This parameter can be a combination of the following
values:
Choose one only:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Choose one or more:
Value Meaning
DM_NOGTD Set this option to ignore GTD events. The default mode will detect GTD events.

If this option is specified, applications can call vocQueryGTD() function to
retrieve the GTD events.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_BUSY Channel is in use.
E_NOFILE Voice file not found.
E_READERR Failed to read voice file.

 vocPlayFile()

 91

E_FMTERR Unknown format.
E_NOMEM Insufficient memory.
E_CHNERR Invalid channel handle.
E_SYSERR Failed to synchronize

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_END End of playing.
EVT_TERMDT Terminated by input digit. Call vocGetTermDT() function to get the

terminated digit.
EVT_ERR I/O Device error. Call vocGetLastErr() function to get detail error code.
EVT_GTD GTD Tone detected. Call vocGetGTD() function to get detail information.
EVT_STOP Channel stopped by vocStopChn() function.

Remarks
This function will return E_FMTERR if the format of specified wave file is not supported. The
supported waveforms are:

n 6 and 8KHz, 8-bit Windows PCM
n 6 and 8KHz, 8-bit µ-law PCM
n 6 and 8KHz, 4-bit OKI ADPCM

If the termination event is EVT_TERMDT, all the input digits including terminated digit are still in
the channel’s DTMF queue. Applications can call the vocGetDT() or vocReadDT() function to
retrieve the input digits or call the vocClearDT() function to clear the DTMF queue.

Two sampling rates (i.e. 6K or 8K) are provided for playing back voice files, and all channels
must apply the same sampling rate. That means application should play back voice files either in
6K or 8K sampling rate for all channels. For example, if the channel 1 is playing in 8K sampling
rate, the other channels should also play file in 8K sampling rate.

This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

Example

Example 1: Using function in synchronous model.

HCHN hChn;
// Play back the “voice.wav” file from the starting point, and terminated by any input digit
if (vocPlayFile(hChn, “voice.wav”, 0L, DT_ALL, DM_SYNC) != E_OK) {
 // Process error
}

Example 2: Using function in asynchronous model.

HCHN hChn;

vocPlayFile()

 92

EVTBLK Event;
// Play back the “voice.wav” file from the starting point, and terminated by any input digit
if (vocPlayFile(hChn, “voice.wav”, 0L, DT_ALL, DM_ASYNC) != E_OK) {
 // Process error
}
…
/* Use vocWaitEvent() to wait for the completion of vocPlayFile() */
vocWaitEvent(hChn, &Event, WT_INFINITE);

 vocPlayTone()

 93

vocPlayTone

This function generates a defined tone on the specified channel.

Syntax
WORD vocPlayTone(

HCHN hChn,
LPFREQDESC lpFreqDesc,
WORD wMode
);

Parameters

hChn
Identifies the channel handle.

lpFreqDesc
Points to a FREQDESC structure to input the tone information. The FREQDESC structure has
the following form:

typedef struct tagFreqDesc {
 int Freq1;
 int Freq2;
 int Amp1;
 int Amp2;
 WORD wDuration;
} FREQDESC;

The detail description of this structure is listed below:
Freq1

Specifies the frequency for tone 1. The valid value is from 200 - 4000 and unit is Hz.
Freq2

Specifies the frequency for tone 2. If the playing tone is a dual-frequency, specifies the
frequency of tone 2 for this field. If the playing tone is a single frequency, fill this field with
zero. The valid value is from 200 - 4000 and unit is Hz.

Amp1
Specifies the amplitude for tone 1. The valid value is from -40 to 0 and unit is dB. The
recommended value is DEF_AMP (-10dB).

Amp2
Specifies the amplitude for tone 2. The valid value is from -40 to 0 and unit is dB. The
recommended value is DEF_AMP (-10dB).

wDuration
Specifies the duration of tone. The time unit is 10 ms. (-1 means infinite duration)

wMode
Specifies the running mode and options. This parameter can be a combination of the following
values:
Choose one only:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Choose one or more:
Value Meaning
DM_NOGTD Set this option to ignore GTD events. The default mode will detect GTD events.

If this option is specified, applications can call vocQueryGTD() function to
retrieve the GTD events.

Return Values

vocPlayTone()

 94

Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_BUSY Channel is in use.
E_CHNERR Invalid channel handle.

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_END End of tone generation.
EVT_ERR I/O Device error. Calls vocGetLastErr() function to get detail error code.
EVT_GTD A GTD Tone detected. Calls vocGetGTD() function to get detail

information.

Remarks
This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

Example

Example 1: Using function in synchronous model.

HCHN hChn;
FREQDESC FreqD;

// Play a 440,480Hz dual-frequency tone for 1 second.
FreqD.Freq1 = 440, FreqD.Freq2 = 480;
FreqD.Amp1 = FreqD.Amp2 = DEF_AMP;
FreqD.wDuration = 100;
if (vocPlayTone(hChn, &FreqD, DM_SYNC) != E_OK) {
 /* process error */
 }

Example 2: Using function in asynchronous model.

HCHN hChn;
FREQDESC FreqD;
EVTBLK Event;

// Play a 480,620Hz dual-frequency tone for 500 ms.
FreqD.Freq1 = 480, FreqD.Freq2 = 620;
FreqD.Amp1 = FreqD.Amp2 = DEF_AMP;
FreqD.wDuration = 50;
if (vocPlayTone(hChn, &FreqD, DM_ASYNC) != E_OK) {
 /* process error */
 }
// Waiting for termination event.
vocWaitEvent(hChn, &Event, WT_INFINITE);
 }

 vocPutSignal()

 95

vocPutSignal

This function is used to simulate the generation of channel’s signal.

Syntax
WORD vocPutSignal(

WORD wChnID,
LPSIGNALBLK pSignalBlk
);

Parameters
wChnID

Identifies the zero-based channel number.
pSignalBlk

Points to a SIGNALBLK structure to simulate the generation of channel’s signal. The
SIGNALBLK structure has the following form:

typedef struct tagSignalBlk {
 WORD wSigType;
 DWORD dwData;
 BYTE bReserved[12];
} SIGNALBLK;

The detail description of this structure is listed below:
wSigType

Specifies the signal type that is going to simulate on the specified channel. This field can be
one of the following values:
Values Meaning
SIM_RING Simulate to generate a ring signal.
SIM_DIGIT Simulate to generate a DTMF tone signal.
SIM_DIAL Simulate to complete dial function.
SIM_GTD Simulate to generate Global Tone Detection.

dwData
Contains the data associated with wSigType. This field has a different definition for each
event type:
wSigType dwData
SIM_RING Specifies the timer tick value when ring signal occurred.
SIM_DIGIT Specifies the ASCII digit. (0 – 9, *, #, A – D)
SIM_DIAL Specifies the dialed results, the definition are the same as wCarType

of vocGetCAR() fucntion.
SIM_GTD Reserved.(don’t care)

Return Values
Returns zero (E_OK) if a signal simulation is generated successfully. Otherwise, it returns a
nonzero value and the possible error returns are:
Value Meaning
E_CHNERR Invalid channel number.
E_BADPARAM Invalid input parameter.

Remarks
This function is used to simulate the generation of channel’s signal just as a real signal occurred.
Such as a ring signal detected or DTMF tone is detected. In particular, this function is suitable for
those environments that the specified channel is not connected with telephone line and is still
capable of demonstrating other voice functions like voice play or recording voice.

Example 1 (Simulate to generate a ring signal)
WORD wChnID;

vocPutSignal()

 96

SIGNALBLK SigBlk;
{
 /* Simulate one ring occurred */
 SigBlk.wSigType = SIM_RING;
 if (vocPutSignal(wChnID, &SigBlk) != E_OK) { // Process error }
}

Example 2 (Simulate to generate a DTMF signal)
WORD wChnID;
SIGNALBLK SigBlk;
{
 /* Simulate one DTMF tone occurred */
 SigBlk.wSigType = SIM_DIGIT;
 SigBlk.dwData = ‘0’; //Simulate a DTMF 0 tone occurred
 if (vocPutSignal(wChnID, &SigBlk) != E_OK) { // Process error }
}

 vocQueryConfGTD()

 97

vocQueryConfGTD

Retrieves the GTD event for a conference call.

Syntax
BOOL vocQueryConfGTD(

HCONF hConf
);

Parameters

hConf
Identifies the conference handle.

Return Values
Returns a TRUE(i.e. value 1) if a GTD event is detected. The more detail information about GTD
event can be retrieved by calling vocGetConfGTD() function. Otherwise, it returns a FALSE (i.e.
value 0) indicating no GTD event detected. In order to prevent from an unexpected error, the
input parameter must be a valid conference handle

Remarks
This function is used to retrieve the GTD event for a conference call. If application has called the
vocMakeConference() function with the DM_NOGTD option, it can use this function to retrieve
the GTD event.

A GTD event will always terminate a executing function. To prevent from this condition,
application can use vocSetGTDMask() function to limit the allowable GTD events or call
functions with DM_NOGTD option to ignore the GTD detection.

When the vocMakeConference() function is called with DM_NOGTD option, applcation can
continuously use the vocQueryConfGTD() function to check the GTD events.

Example
HCONF hConf;
GTDDESC GTD;
EVTBLK Event;
if (vocMakeConference(NULL, 8, &hConf, DM_NOGTD) != E_OK) {
 //Process making conference error
}
while (1) {
 if (vocQueryConfGTD(hConf) == TRUE) {
 vocGetConfGTD(hConf);
 // Process GTD occurred
 }
 if (vocWaitConfEvent(hConf, &Event, 500) == E_OK) {
 //Process function completion
 break;
 }
}

vocQueryGTD()

 98

vocQueryGTD

Retrieves the GTD event for some limited functions .

Syntax
BOOL vocQueryGTD(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
Returns a TRUE(i.e. value 1) if a GTD event is detected. The more detail information about GTD
event can be retrieved by calling vocGetGTD() function. Otherwise, it returns a FALSE (i.e.
value 0) indicating no GTD event detected. In order to prevent from an unexpected error, the
input parameter must be a valid channel handle

Remarks
This function is used to retrieve the GTD events for the specified channel. If application has
called the some asynchronous functions with the DM_NOGTD option, it can use this function to
retrieve the GTD event.

A GTD event will always terminate a executing function. To prevent from this condition,
application can use vocSetGTDMask() function to limit the allowable GTD events or call
functions with DM_NOGTD option to ignore the GTD detection.

When an asynchronous function is called with DM_NOGTD option, applcation can continuously
use the vocQueryGTD() function to check the GTD events.

Example
HCHN hChn;
GTDDESC GTD;
EVTBLK Event;
if (vocPlayFile(hChn, “Greet.wav”, 0, DT_NONE, DM_ASYNC+DM_NOGTD) != E_OK) {
 //Process play file error
}
while (1) {
 if (vocQueryGTD(hChn) == TRUE) {
 vocGetGTD(hChn);
 // Process GTD occurred
 }
 if (vocWaitEvent(hChn, &Event, 500) == E_OK) {
 //Process function completion
 break;
 }
}

 vocReadDT()

 99

vocReadDT

This function reads a digit from the channel’s DTMF queue.

Syntax
char vocReadDT(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
Returns zero if there is no digit in the channel’s DTMF queue. Otherwise, it returns an ASCII
character of DTMF digit. The possible returned ASCII characters are 0,1, 2, 3, 4, 5, 6, 7, 8, 9, *, #,
A, B, C, D.

Remarks
This function just reads single character from DTMF queue, and there is no termination event will
be generated when this function is complete.

Example
HCHN hChn;
EVTBLK Event;

// To play file of voice.wav with no DTMF termination and running asynchronously.
if (vocPlayFile(hChn, “voice.wav”, 0L, DT_NONE, DM_ASYNC) != E_OK) {
 // Process error
}
while (TRUE) {
//Waiting for termination event.
 if (vocWaitEvent(hChn, &Event, 1000) == E_OK) {
 …
 break;
 }
 if (vocReadDT(hChn) == ‘0’) {…//Process for DTMF 0 is detected}
}

vocReadOEMVersion()

 100

vocReadOEMVersion

This function returns the OEM version number of the specified channel.

Syntax
DWORD vocReadOEMVersion(

HCHN hChn
);

Parameters

hChn
Identifies the channel handle.

Return Values
Returns the OEM version number of the specified channel. The ret urn value will be zero if no
voice board is found or invalid channel handle is specified.

Example
HCHN hChn;
DWORD dwOEMVersionNo;

if ((dwOEMVersionNo = vocReadOEMVersion(hChn)) == 0) {
 printf(“\n\rNo voice board found or invalid channel handle is specified .”);
}
else {
 printf(“\n\rThe OEM version number of this channel is %lu”, dwOEMVersionNo);
}

 vocRecordFile()

 101

vocRecordFile

This function records a voice file.

Syntax
WORD vocRecordFile(

HCHN hChn,
LPSTR szVocFile,
DWORD dwRecTime,
WORD wTermDTs,
WORD wMode
);

Parameters
hChn

Identifies the channel handle.
szVocFile

Points to a null-terminated character string named the file to record.
dwRecTime

Specifies the time interval for voice recording, in milliseconds. If this parameter is WT_INFINITE,
the record time interval never elapses.

wTermDTs
Specifies the termination digits, in which the reception of any digit will terminate this function.
This parameter can be a combination of the following values:
DT_0 : Digit 0. DT_6 : Digit 6. DT_A : Digit A.
DT_1 : Digit 1. DT_7 : Digit 7. DT_B : Digit B.
DT_2 : Digit 2. DT_8 : Digit 8. DT_C : Digit C.
DT_3 : Digit 3. DT_9 : Digit 9. DT_D : Digit D.
DT_4 : Digit 4. DT_S : Digit *. DT_ALL : For all digits.
DT_5 : Digit 5. DT_P : Digit #. DT_NONE: No termination digit.

wMode
Specifies the running mode and recording format. This parameter can be a combination of the
following values:

Choose one only:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Choose one only:
Value Meaning
VM_ADPCM Uses OKI ADPCM format for voice recording. This value cannot be used with

VM_MULAW and VM_WAVE options.
VM_MULAW Uses the µ-law PCM format for voice recording. This value cannot be used with

VM_ADPCM and VM_WAVE options.
VM_WAVE Uses the multimedia wave format for voice recording. This value cannot be used

with VM_ADPCM and VM_MULAW options.

Choose one or more:
Value Meaning
VM_SR6 Uses 6KHz sampling rate for voice recording. If this va lue is not specified, the

default sampling rate is 8KHz.
VM_NOAGC Records without AGC (Automatic Gain Control). If this value is not specified, the

default setting is recording with AGC.

vocRecordFile()

 102

VM_SCOMP Uses silence compression for voice recording.
DM_NOGTD Set this option to ignore GTD events. The default mode will detect GTD events.

If this option is specified, applications can call vocQueryGTD() function to
retrieve the GTD events.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_BUSY Channel is in use.
E_CREATEERR Failed to create the voice file.
E_FMTERR Unknown format.
E_NOMEM Insufficient memory.
E_CHNERR Invalid channel handle.

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_MAXTIME The recording time is reached.
EVT_TERMDT Terminated by input digit. Call vocGetTermDT() function to get the

terminated digit.
EVT_ERR I/O Device error. Call vocGetLastErr() function to get detail error code.
EVT_GTD GTD Tone detected. Call vocGetGTD() function to get detail information.
EVT_STOP Channel stopped by vocStopChn() function.

Remarks
If the termination event is EVT_TERMDT, all the input digits including terminated digit are still in
the channel’s DTMF queue. Applications can call the vocGetDT() or vocReadDT() function to
retrieve the input digits or call the vocClearDT() function to clear the DTMF queue.

Two sampling rates (i.e. 6K or 8K) are provided for the voice recording, and all channels must
apply the same sampling rate. That means application should record voice files either in 6K or
8K sampling rate for all channels. For example, if the channel 1 is recording in 8K sampling rate,
the other channels should also record file in 8K sampling rate.

This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

Example

Example 1: Using function in synchronous model.
HCHN hChn;

// Record a voice file. Function will be stopped by either 30 seconds reaches, or any input DTMF.

 vocRecordFile()

 103

if (vocRecordFile(hChn, “voice.wav”, 30000, DT_ALL, DM_SYNC) != E_OK) {
 // Process error
}

Example 2: Using function in asynchronous model.

HCHN hChn;
EVTBLK Event;
// Record a voice file. Function will be stopped by either 60 seconds reaches, or input digit 0.
if (vocRecordFile(hChn, “voice.wav”, 60000, DT_0, DM_ASYNC) != E_OK) {
 // Process error
}
// Waiting for termination event.
vocWaitEvent(hChn, &Event, WT_INFINITE);

vocSetChnIO()

 104

vocSetChnIO

This function controls the I/O status of the specified channel.

Syntax
WORD vocSetChnIO(

HCHN hChn,
WORD wSwitch
);

Parameters
hChn

Identifies the channel handle.
wSwitch

Specifies the I/O control type , this parameter can be one of the following values:
Value Meaning
IO_SPK_ON Turns on the speaker of the specified channel.
IO_SPK_OFF Turns off the speaker of the specified channel.
IO_PHONE_CO Connects the local phone set to the CO line.
IO_PHONE_PC Connects the local phone set to the PC system.
IO_RINGCTRL_ON Enables the ring detection for fax/modem chip.
IO_RINGCTRL_OFF Disables the ring detection for fax/modem chip.
IO_AUTORST_ON Enables the auto-reset function of the specified channel.
IO_AUTORST_OFF Disables the auto-reset function of the specified channel.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
To record voice from the local phone set, call this function with IO_PHONE_PC parameter. After
voice recorded, the local phone set should be in the IO_PHONE_CO status.

For each voice board, if one of the channel speakers is turned on, the other channels’ speaker,
which are on the same voice board will be turned off automatically.

The IO_PHONE_CO and IO_PHONE_PC are only available for the first port of voice board.

Example
HCHN hChn;

// Turn on the speak of the specified channel
if (vocSetChnIO(hChn, IO_SPK_ON) != E_OK) {
 // Process error
}

 vocSetChnParam()

 105

vocSetChnParam

This function sets the channel parameters.

Syntax
WORD vocSetChnParam(

HCHN hChn,
WORD wParam,
DWORD dwData
);

Parameters

hChn
Identifies the channel handle.

wParam
Specifies the channel parameter to change. This parameter can be one of the following values:
Values Meaning
CP_IDDTIME Set the Inter-digit delay (IDD) time.
CP_IDDFLAG Set the IDD options.
CP_CALLERID Enable or disable the Caller ID function (only for 4R or 8R card).
CP_HANDSET Enable or disable the handset detection (only for 4R or 8R card).

dwData
Contains the data associated with wParam. This field has a different definition for each channel
parameter:
wParam dwData
CP_IDDTIME Specifies the IDD time in seconds. A nonzero value will enable the IDD

time check function, and a zero value will disable the IDD time check
function. The default IDD time is 0 after channel opened.

CP_IDDFLAG 1 – indicates the IDD time check is starting from the first digit.

0 – indicates the IDD time check is starting from the second digit. This is
the default setting after channel opened.

CP_CALLERID This parameter is only available on Plus-4R and Plus-8R voice boards,
and the dwData field can be one of the following value:
CPX_FSK To enable the Caller ID detection by using FSK

demodulation (compatible with the Bell-202
specification, 1200 baud rate FSK signal)

CPX_DTMF To enable the Caller ID detection by using DTMF
method.

CPX_DISABLE To disable the detection of Caller ID function. This is
the default setting after channel opened.

CP_HANDSET This parameter is only available on Plus-4R and Plus-8R voice boards,

and the dwData field can be one of the following value:
CPX_ENABLE To enable the detection of handset function.
CPX_DISABLE To disable the detection of handset function.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_ERR Requested function is not supported.

vocSetChnParam()

 106

Example:
HCHN hChn;

// Set the IDD time to 2 seconds
if (vocSetChnParam(hChn, CP_IDDTIME, 2) != E_OK) {
 // Process error,
}

 vocSetConfVol()

 107

 vocSetConfVol

This function controls the volume level of the specified conference call.

Syntax
WORD vocSetConfVol(

HCONF hConf,
WORD wVolume
);

Parameters
hConf

Identifies the conference handle.
wVolume

Specifies the volume level to set. The valid value is from 0 to 15. The default volume level is set
by vocMakeConference() function, and 15 is the highest leve l.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_CONFERR Invalid conference handle.

Example
HCONF hConf;
WORD Volume;

Volume = vocGetConfVol(hConf);
vocSetConfVol(hConf, ++Volume); //Increment volume level in a conference

vocSetCSTMask ()

 108

vocSetCSTMask

This function is used to enable the detection of channel status transition, and clear all the
pending CST events in the queue.

Syntax
WORD vocSetCSTMask(

HCHN hChn,
WORD wCstMask
);

Parameters

hChn
Identifies the channel handle.

wCstMask
Specifies the mask bits of CST event. This parameter can be a combination of the following
values:
Values Meaning
CSM_RING Waits for rings.
CSM_DIGIT Waits for DTMF.
CSM_SILON Waits for silence on.
CSM_SILOFF Waits for silence off.
CSM_ONHOOK Waits for On-hook.
CSM_OFFHOOK Waits for Off-hook.
CSM_LCREV Waits for loop current reversal.
CSM_LCDROP Waits for loop current drop.
CSM_TONEON Waits for a user-defined tone detected.
CSM_HANDSET Wai ts for a handset status changed, either on-hook or off-hook (only for

4R or 8R card).
CSM_ALL Waits for all the CST events.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value and
the possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
This function controls the CST event detection. The default CST mask of an opened channel
disables all CST events detection.

Example
HCHN hChn;

// Enable the silence-on and silence-off detection.
if (vocSetCSTMask(hChn, CSM_SILON | CSM_SILOFF) != E_OK) {
 // Process error
}

 vocSetEventCallback()

 109

vocSetEventCallback

This function redefines the event callback function.

Syntax
WORD vocSetEventCallback (

HCHN hChn,
LPCBDESC pCallBack
);

Parameters
hChn

Identifies the channel handle.
pCallBack

Points to a CBDESC structure to specify the callback information. If no callback function is
required, this value can be zero. The CBDESC structure has the following form:

typedef struct tagCBDesc {
 DWORD dwEventCallback ;
 DWORD dwEventCallbackInst;
 DWORD dwEventFlag;
 DWORD dwEventMsg;
 DWORD dwCSTCallback;
 DWORD dwCSTCallbackInst;
 DWORD dwCSTFlag;
 DWORD dwCSTMsg;
} CBDESC;

The detail information of this structure is described by vocOpenChn() function.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value and
the possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
This function is used to redefine the callback mechanism which has already defined by the
vocOpenChn() function.

vocSetGTDMask()

 110

vocSetGTDMask

This function is used to enable the Global Tone Detection.

Syntax
WORD vocSetGTDMask(

HCHN hChn,
WORD wGTDMask,
LPSTR pUserTone,
WORD wUserToneLen
);

Parameters
hChn

Identifies the channel handle.
wGTDMask

Specifies the mask bits of GTD tone. This parameter can be a combination of the following
values:

Value Meaning
GTM_SIL Enables the sil ence detection.
GTM_NONSIL Enables the non-silence detection.
GTM_HANGUP Enables the hang-up tone detection.
GTM_LCDROP Enables the loop current drop detection.
GTM_LCREV Enables the loop current reversal detection.
GTM_SIT1 Enables the SIT1 tone detection.
GTM_SIT2 Enables the SIT2 tone detection.
GTM_SIT3 Enables the SIT3 tone detection.
GTM_USER Enables the user-defined tone detection, and the Tone ID is defined by

the pUserTone field.
GTM_ALL Enables all the GTD detection.

pUserTone
Points to a byte buffer, which specifies the Tone ID (0 – 255) to enable. This parameter is valid if
the wGTDMask field contains GTM_USER, otherwise set this parameter to NULL.

wUserToneLen
Specifies the number of Tone ID defined by the pUserTone. This parameter is valid if the
wGTDMask field contains GTM_USER, otherwise set this parameter to NULL.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value and
the possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
This function is used to control Global Tone Detection. The default GTD mask of an opened
channel enables for all GTD detection.

Example:
HCHN hChn;
BYTE ToneID[3];
// Set the Tone ID array to enable
ToneID[0] = 0, ToneID[1] = 1, ToneID[2] = 5;
// Enable the detection of silence-on, hang-up tone and user-defined tone.
if (vocSetGTDMask(hChn, GTM_SIL | GTM_HANGUP|GTM_USER, ToneID, 3) != E_OK) {
 // Process error
}

 vocSetHook()

 111

vocSetHook

This function controls the phone line of the specified channel.

Syntax
WORD vocSetHook(

HCHN hChn,
WORD wSwitch,
WORD wMode
);

Parameters

hChn
Identifies the channel handle.

wSwitch
Specifies the I/O control type, this parameter can be one of the following values:
Value Meaning
IO_HOOK_OFF To off hook the specified channel.
IO_HOOK_ON To hang up the specified channel.
IO_HOOK_DUMMY To support the On-Hook recording function. This function is available only

for some voice board.
wMode

Specifies the running mode. This parameter can be one of the following values:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Return Values
Returns E_OK if the function was successful. Otherwise, it returns a nonzero value. The possible
error returns are:
Value Meaning
E_BUSY Channel is in use.
E_CHNERR Invalid channel handle.

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_END End of set-hook function.

Remarks
This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

vocSetHook()

 112

Example

Example 1: Using function in synchronous model.

if (vocSetHook(hChn, IO_HOOK_OFF, DM_SYNC) != E_OK) {
 // Process error
}

Example 2: Using function in asynchronous model.

HCHN hChn;
EVTBLK Ev ent;
if (vocSetHook(hChn, IO_HOOK_OFF, DM_ASYNC) != E_OK) {
 // Process error
}
// Waiting for termination event.
vocWaitEvent(hChn, &Event, WT_INFINITE);

 vocSetVolume()

 113

 vocSetVolume

This function controls the output/input volume level of the specified channel.

Syntax
WORD vocSetVolume(

HCHN hChn,
WORD wType,
WORD wVolume
);

Parameters

hChn
Identifies the channel handle.

wType
Specifies the volume type. This parameter can be one of the following values:
Value Meaning
OUT_VOLUME Indicates the output volume level for voice playing.
IN_VOLUME Indicates the input volume level for voice recording.

wVolume
Specifies the volume level to set. The valid value is from 0 to 15. The default volume level is 8,
and 15 is the highest level.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Remarks
The default output and input volume level are configured by the DIAG32.EXE. Applications don’t
change the input volume level if possible.

Example:
HCHN hChn;

// Set the volume level to 8
if (vocSetVolume(hChn, OUT_VOLUME, 8) != E_OK) {
 // Process error
}

vocStopChn()

 114

 vocStopChn

This function stops the current active I/O function on the specified channel.

Syntax
WORD vocStopChn(

HCHN hChn,
WORD wMode
);

Parameters
hChn

Identifies the channel handle.
wMode

Specifies the running mode. This parameter can be one of the following values:
Value Meaning
DM_SYNC Sets this option to run function synchronously.
DM_ASYNC Sets this option to run function asynchronously.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.

Termination Events:
The possible termination events for this function are listed below:
Event Meaning
EVT_STOP Channel stopped by vocStopChn() function.

Remarks
This function can run in synchronous or asynchronous model specified by the wMode
parameter.

Synchronous Model

By default, this function runs synchronously. It will return a zero (E_OK) to indicate function has
completed successfully, and the termination event can be retrieved by calling the
vocGetLastTerm() function. Otherwise, It will return a nonzero value for error code.

Asynchronous Model

When this function runs asynchronously. It will return a zero (E_OK) to indicate the function has
initiated successfully, and it will generate a termination event after function completed. The
possible termination events are listed above. A nonzero value returned by this function indicates
an error occurred.

Example

Example 1: Using function in synchronous model.
HCHN hChn;

if (vocStopChn(hChn, DM_SYNC) != E_OK) {

 // Process error
}

Example 2: Using function in asynchronous model.

 vocStopChn()

 115

HCHN hChn;
EVTBLK Event;

if (vocStopChn(hChn, DM_ASYNC) != E_OK) {
 // Process error
}
// Waiting for termination event.
vocWaitEvent(hChn, &Event, WT_INFINITE);

vocSwitchFax()

 116

vocSwitchFax

This function is used to allocate or free the fax resource and switch the fax daughter-board to the
specified voice channel.

Syntax
WORD vocSwitchFax(

HCHN hChn,
WORD wCmd
);

Parameters

hChn
Identifies the voice channel handle.

wCmd
Specifies the command to allocate the fax resource from the fax daughter -board. This parameter
can be one of the following values:
Value Meaning
1 To allocate a fax resource and switch the fax unit to the specified voice

channel.
0 To free a fax resource.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_DEVICE_IN_USE Fax line was switched to specified voice channel already.

Remarks
This function is used only for the fax daughter board on the voice card. Please be aware that the
voice channel must be opened before the fax line switching to. After this function is successfully
called, application can use the same channel both for voice and fax processing.

Please note that although there are more than one-fax daughter boards installed in your system,
but only one fax unit is working at a time. Application should call vocSwitchFax() function to
allocate the fax resource, and then the fax function will work at the specified voice channel. After
the fax function completed, Application should also call vocSwitchFax() function to free the fax
resource, and the fax resource will be available for other channels.

Example

Example 1: Using this function to send a fax.

HCHN hVocChn, hFaxChn;
if (vocOpenChn(&hVocChn, 0, NULL) != E_OK) {… Process error…}
 :
vocSetHook(hVocChn, IO_HOOK_OFF, DM_SYNC);
 :
if (vocSwitchFax(hVocChn, 1) != E_OK) {…Processing Error…};
if (faxOpenChn(&hFaxChn, ANY_CHN, NULL) != E_OK) {…Processing Error…} //Defined in FAXLIB32
if (faxSend(hFaxChn,….) != E_OK) {…Processing Error…}; //Defined in FAXLIB32
faxCloseChn(hFaxChn);
vocSwitchFax(hVocChn, 0);

Example 2: Using this function to receive a fax.

HCHN hVocChn, hFaxChn;
if (vocOpenChn(&hVocChn, 0, NULL) != E_OK) {… Process error…}

 vocSwitchFax()

 117

 :
vocSetHook(hVocChn, IO_HOOK_OFF, DM_SYNC);
 :
if (vocSwitchFax(hVocChn, 1) != E_OK) {…Processing Error…};
if (faxOpenChn(&hFaxChn, ANY_CHN, NULL) != E_OK) {…Processing Error…} //Defined in FAXLIB32
if (faxReceive(hFaxChn,….) != E_OK) {…Processing Error…}; //Defined in FAXLIB32
faxCloseChn(hFaxChn);
vocSwitchFax(hVocChn, 0);

Example 3: Using this function to receive a fax with faxWaitRing() function.

The default setting of fax daughter board will not detect the incoming ring signal. In order to
enable the ring detection for fax daughter, the vocSetChnIO() function should be called with
IO_RINGCTRL_ON parameter.

HCHN hVocChn, hFaxChn;
if (vocOpenChn(&hVocChn, 0, NULL) != E_OK) {… Process error…}
 :
if (vocSetChnIO(hVocChn, IO_RINGCTRL_ON) != E_OK) {… Process error…} //Enable ring detection for fax
 :
if (vocSwitchFax(hVocChn, 1) != E_OK) {…Processing Error…};
if (faxOpenChn(&hFaxChn, ANY_CHN, NULL) != E_OK) {…Processing Error…} //Defined in FAXLIB32
if (faxWaitRing(hFaxChn, 3, WT_INFINITE) != E_OK) {…Processing Error…} //Defined in FAXLIB32;
vocSetHook(hVocChn, IO_HOOK_OFF, DM_SYNC);
if (faxReceive(hFaxChn,….) != E_OK) {…Processing Error…} //Defined in FAXLIB32;
faxCloseChn(hFaxChn);
vocSwitchFax(hVocChn, 0);
 :

vocUnlisten()

 118

vocUnlisten

This function disconnects voice receive channel from SCbus. This function disconnects the
voice receive (listen) channel on a PLUS-4LVSC board from the SCbus.

Syntax
WORD vocUnlisten (

HCHN hChn
);

Parameters
hChn

Identifies the channel handle.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value. The
possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_FUNERR Function is not supported in current bus configuration.

Remarks
Calling the vocListen() function to connect to a different SCbus time slot will automatically break
an existing connection. Thus, when changing connections, you need not call the vocUnlisten()
function.

Example
HCHN hChn;
if (vocUnlisten(hChn) == E_OK) {
 printf(“\n\rVoice channel is no longer listening!”);
}

 vocWaitConfEvent()

 119

vocWaitConfEvent

This function is used to retrieve the termination event of vocMakeConference() function for the
specified conference handle.

Syntax
WORD vocWaitConfEvent(

HCONF hConf,
LPWORD pEvent,
DWORD dwTimeout
);

Parameters
hConf

Identifies the conference handle.
pEvent

Pointers to an buffer in WORD to receive the termination event as follows:
Values Meaning
EVT_END Function is terminated by vocBreakConference().
EVT_GTD Function is terminated by GTD tone detection. Call vocGetConfGTD()

function to retrieve the source of GTD event.
dwTimeout

Specifies the time-out interval, in mili seconds. The function returns E_TIMEOUT if the interval
elapses. If wTimeout is INFINITE, the function's time-out interval never elapses.

Return Values
Returns zero (E_OK) if a termination event was received successfully. Otherwise, it returns a
nonzero value and the possible error returns are:
Value Meaning
E_CONFERR Invalid conference handle.
E_TIMEOUT Time-out interval elapsed.
E_SYSERR Failed to synchronize.

Example
HCONF hConf;
WORD wEvent;

if (vocWaitConfEvent(hConf, &wEvent, WT_INFINITE) == E_OK) {

 /*Process function completion*/
 switch (wEvent) {
 case EVT_END: {…//Process normal ending}
 case EVT_GTD: {…//Process GTD event}
 }
}

vocWaitCST()

 120

vocWaitCST

This function is used to monitor the channel status transition.

Syntax
WORD vocWaitCST(

HCHN hChn,
LPCSTBLK pCst,
DWORD dwTimeout
);

Parameters

hChn
Identifies the channel handle.

pCst
Points to a CSTBLK structure to receive the channel status information. The CSTBLK structure
has the following form:

typedef struct tagCstBlk {
 HCHN hChn;
 WORD wStatus;
 DWORD dwData;
 BYTE bReserved[12];
} CSTBLK;

The detail description of this structure is listed below:
hChn

Identifies the channel handle.
wStatus

Specifies the channel status. This field can be one of the following values:
Values Meaning
CST_RING Ring signal is detected.
CST_DIGIT A DTMF detected.
CST_SILON Silence is now on.
CST_SILOFF Silence is now off.
CST_ONHOOK On-hook occurred.
CST_OFFHOOK Off-hook occurred.
CST_LCREV A loop current reversal detected.
CST_LCDROP A loop current drop detected.
CST_TONEON A user-defined tone detected.
CST_HANDSET A handset status change event detected.

dwData
Contains the data associated with wStatus. This field has a different definition for each CST
status:
CST Status CST Data
CST_RING Specifies the timer tick value when ring signal occurred.
CST_DIGIT Specifies the ASCII digit. (0 – 9, *, #, A – D)
CST_SILON Specifies the interval for non-silence time. (1 ms units)
CST_SILOFF Specifies the interval for silence time. (1 ms units)
CST_ONHOOK N/A.
CST_OFFHOOK N/A.
CST_LCREV Reverse state. (LC_NORM2REV or LC_REV2NORM)
CST_LCDROP N/A.
CST_TONEON Specifies the user-defined Tone ID.
CST_HANDSET Specifies the handset status, 0 for hang-up and 1 for off-hook.

dwTimeout

 vocWaitCST()

 121

Specifies the time-out interval, in milliseconds. The function returns E_TIMEOUT if no CST
event is present and the interval elapses. If dwTimeout is zero, the function will return
immediately. If wTimeout is WT_INFINITE, the function's time-out interval never elapses.

Return Values
Returns zero (E_OK) if a CST event was received successful. Otherwise, it returns a nonzero
value and the possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_TIMEOUT Time-out interval elapsed.
E_SYSERR Failed to synchronize

Remarks
This function is used to monitor channel status. The status transition event can be masked on or
off by calling vocSetCSTMask() function. If the callback model is used for CST events,
programmer should call vocGetLastCST() to get the channel status in callback routine.

Example
HCHN hChn;
CSTBLK CST;

if (vocSetCSTMask(hChn, CSM_SILON) != E_OK) {
 // Process error
}
if (vocWaitCST(hChn, &CST, WT_INFINITE) != E_OK) {
 // Process error
}
if (CST.wStatus == CST_SILOFF) {
 printf(“\n\rThe interval of silence time is (%lu) ms.”, CST.dwData);
}

vocWaitEvent()

 122

vocWaitEvent

This function is used to retrieve the termination event of the specified channel.

Syntax
WORD vocWaitEvent(

HCHN hChn,
LPEVTBLK pEvent,
DWORD dwTimeout
);

Parameters

hChn
Identifies the channel handle.

pEvent
Points to an EVTBLK structure to receive the event information. The EVTBLK structure has the
following form:

typedef struct tagEvtBlk {
 HCHN hChn;
 WORD wEvent;
 WORD wTermFun;
 BYTE bReserved[12];
} EVTBLK;

The detail description of this structure is listed below:
hChn

Identifies the channel handle.
wEvent

Specifies the termination event. This field can be one of the following values:
Values Meaning
EVT_END Function is terminated successful.
EVT_ERR Function is terminated due to an error. Call vocGetLastErr() function

to retrieve the reason of error.
EVT_GTD GTD tone detected. Call vocGetGTD() function to retrieve the reason

of GTD detection.
EVT_MAXDTMF The maximum number of digits has received.
EVT_IDDTIME Inter-digit delay time elapsed.
EVT_MAXTIME Maximum function time elapsed.
EVT_STOP Channel stopped by vocStopChn() function.
EVT_TERMDT Terminated by input digit. Call vocGetTermDT() function to get the

terminated digit.
wTermFun

Specifies which function is completed. This field can be one of the following values:
Values Meaning
CBT_PLAY Indicates the vocPlayFile() function is completed and a termination

event is generated.
CBT_RECORD Indicates the vocRecordFile() function is completed and a

termination event is generated.
CBT_GETDT Indicates the vocGetDT() function is completed and a termination

event is generated.
CBT_DIAL Indicates the vocDial() function is completed and a termination event

is generated.
CBT_PLAYTONE Indicates the vocPlayTone() function is completed and a termination

event is generated.
CBT_SETHOOK Indicates the vocSetHook() function is completed and a termination

event is generated.

 vocWaitEvent()

 123

CBT_FLASHHOOK Indicates the vocFlashHook() function is completed and a
termination event is generated.

dwTimeout
Specifies the time-out interval, in milliseconds. The function returns E_TIMEOUT if no
termination event is present and the interval elapses. If dwTimeout is zero, the function will
return immediately. If wTimeout is WT_INFINITE, the function's time-out interval never elapses.

Return Values
Returns zero (E_OK) if a termination event was received successful. Otherwise, it returns a
nonzero value and the possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_TIMEOUT Time-out interval elapsed.
E_SYSERR Failed to synchronize

Remarks
This function is used to synchronously monitor channel’s status.

Example
HCHN hChn;
EVTBLK Event;
if (vocWaitEvent(hChn, &Event, WT_INFINITE) != E_OK) {
 // Process error
}

vocWaitRing()

 124

 vocWaitRing

This function waits for a specified number of rings and sets the channel to on-hook or off-hook
after the rings are detected.

Syntax
WORD vocWaitRing(

HCHN hChn,
WORD wRings,
WORD wState,
DWORD dwTimeout
);

Parameters
hChn

Identifies the channel handle.
wRings

Specifies the number of rings to wait.
wState

Specifies the Hook State to set after the number of rings is detected. This parameter can be one
of the following values:
Value Meaning
IO_HOOK_ON Channel remains on-hook when the number of rings is detected.
IO_HOOK_OFF Channel gets off-hook when the number of rings is detected.
IO_HOOK_DUMMY Channel gets a dummy off-hook when the number of rings is detected.

dwTimeout
Specifies the time-out interval, in milliseconds. The function returns E_TIMEOUT if no ring signal
is detected and the interval elapses. If dwTimeout is zero, the function will return immediately. If
wTimeout is WT_INFINITE, the function's time-out interval never elapses.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value and
the possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_TIMEOUT Time-out interval elapsed.
E_IOERR driver IO operation failed.

Example
HCHN hChn;

// Wait forever until 3 rings reached then off-hook
if (vocWaitRing(hChn, 3, IO_HOOK_OFF, WT_INFINITE) != E_OK) {
 // Process error
}

 vocWaitRingEx ()

 125

vocWaitRingEx

This function waits for a specified number of rings and sets the channel to on-hook or off-hook
after the rings are detected. A caller’s phone number is also returned by this function.

Syntax
WORD vocWaitRingEx(

HCHN hChn,
WORD wRings,
WORD wState,
DWORD dwTimeout.
LPSTR pBuf
);

Parameters
hChn

Identifies the channel handle.
wRings

Specifies the number of rings to wait.
wState

Specifies the Hook State to set after the number of rings is detected. This parameter can be one
of the following values:
Value Meaning
IO_HOOK_ON Channel remains on-hook when the number of rings is detected.
IO_HOOK_OFF Channel gets off-hook when the number of rings is detected.
IO_HOOK_DUMMY Channel gets a dummy off-hook when the number of rings is detected.

dwTimeout
Specifies the time-out interval, in milliseconds. The function returns E_TIMEOUT if no ring signal
is detected and the interval elapses. If dwTimeout is zero, the function will return immediately. If
wTimeout is WT_INFINITE, the function's time-out interval never elapses.

pBuf
Pointers to a buffer to receive the caller’s phone number. The caller’s phone number is a
null-terminated ASCIIZ string. A null string will be returned if no caller’s phone number detected.
The maximum length of caller’s phone number is 300 (MAX_CID_LENGTH) bytes.

Return Values
Returns zero (E_OK) if the function was successful. Otherwise, it returns a nonzero value and
the possible error returns are:
Value Meaning
E_CHNERR Invalid channel handle.
E_TIMEOUT Time-out interval elapsed.
E_IOERR driver IO operation failed.

Remarks
The Caller ID feature is not supported on the all voice boards.

Example
HCHN hChn;
char buf[MAX_CID_LENGTH];

// Wait forever until 3 rings reached then off-hook
if (vocWaitRing(hChn, 3, IO_HOOK_OFF, WT_INFINITE, buf) != E_OK) {
 // Process error
}
printf(“\n\rCaller ID is %s”, buf);

 CHNMON32 Program

 127

CHNMON32 Program

The channel monitor program CHNMON32.EXE supports a MDI window interface
and can display all the channel messages on the individual MDI window. It also
can save all the output messages in log files for a long time debug.

If a windows program wants to show its debug messages on the CHNMON32
program, it can call monShowCST() and monShowMSG() functions of the
ChnMon32.DLL. The function specification of ChnMon32 is described below:

monShowCST

 128

monShowCST

This function shows the CST status on the CHNMON32 program.

Syntax
WORD monShowCST (

WORD wChnID,
WORD wStatus,
DWORD dwData
);

Parameters

wChnID
Identifies the channel number. The channel number starts from 0 and can be got by calling
vocGetChnID() function.

wStatus
Specifies the channel status. This parameter can be one of the following values:
Values Meaning
CST_RING Ring signal is detected.
CST_DIGIT A DTMF detected.
CST_ONHOOK On-hook occurred.
CST_OFFHOOK Off-hook occurred.

dwData
Contains the data associated with wStatus. This parameter has a different definition for
each CST status:
CST Status CST Data
CST_RING 0
CST_DIGIT Specifies the ASCII digit. (0 – 9, *, #, A – D)
CST_ONHOOK Reserved to 0.
CST_OFFHOOK Reserved to 0.

Return Values
Returns zero (MONMSG_OK) if the function was successful. Otherwise, it returns a nonzero
value and the possible error returns are:
Value Meaning
MONMSG_CHNID_ERR Invalid channel number.
MONMSG_FILE_MAP_ERR Unable to create map file.

Example
#include “ChnMon32.h”

HCHN hChn;
WORD wChnID;

WChnID = vocGetChnID(hChn);
If (monShowCST(wChnID, CST_ONHOOK, NULL) != MONMSG_OK) {
 // Process error
}

 monShowMSG

 129

monShowMSG

This function shows the message on the CHNMON32 program.

Syntax
WORD monShowMSG (

WORD wChnID,
LPSTR lpFmt,
…
);

Parameters

wChnID
Identifies the channel number. The channel number starts from 0 and can be got by calling
vocGetChnID() function.

lpFmt
Points to a null-terminated string that contains the format -control specifications. In addition to
ordinary ASCII characters, a format specification for each argument appears in this string. For
more information about the format specification, see the wsprintf() function of Windows API.

…
Specifies one or more optional arguments. The number and type of argument parameters
depend on the corresponding format-control specifications in the lpFmt parameter.

Return Values
Returns zero (MONMSG_OK) if the function was successful. Otherwise, it returns a nonzero
value and the possible error returns are:
Value Meaning
MONMSG_CHNID_ERR Invalid channel number.
MONMSG_FILE_MAP_ERR Unable to create map file.
MONMSG_TEXT_ERR Invalid text string.

Example
#include “ChnMon32.h”

HCHN hChn;
WORD wChnID;

WChnID = vocGetChnID(hChn);
monShowMSG(wChnID, “Channel ID = %u, Playing voce file(%s)…“, wChnID, “voice.wav”);
 // Process error
}

 Caller ID

 130

Application Notes

• Caller ID
• ADSI (Analog Display Services Interface)
• Voice Logging System
• SC Bus Application

Caller ID

 131

 Caller ID

 132

Caller ID

Overview

Caller Identification (Caller ID) is a feature that enables the called lines to receive the caller’s phone

number, possibly date, time, name of caller, and other information about the call. There are two

protocols to transmit the Call ID information, one is FSK (Frequency Shift Keying) and another is

DTMF signal.

FSK

The FSK feature provided by Plus-series voice boards is transmitted at 1200 baud, and compliant

to the V.23 standard characteristics. It supports all countries that use the Bellcore CLASS

specification. The Caller ID formats currently supported are:

• Custom Local Area Signaling Services (CLASS) is a standard published by Bellcore.

• Analog Calling Line Identity Presentation (ACLIP) is a standard used in Singapore.

• Calling Line Identity Presentation (CLIP) is a standard used in the Unit Kingdom.

For CLASS and ACLIP, the Caller ID information received from the CO (Central Office) line is

between the first ring and second ring signal.

For CLIP, the Caller ID information received from the CO (Central Office) line is before the first ring

signal.

The Caller ID information for CLASS and ACLIP contains two format types:

Caller ID

1st Ring 2nd Ring 3rd Ring

Caller ID

1st Ring 2nd Ring

Caller ID

 133

• Single Data Message (SDM) format, which includes the following information:

• SDM format type

• Calling line Identity (CLI) (i.e. Calling phone number)

• Date

• Time

• Multiple Data Message (MDM) format, which includes the following information:

• MDM format type

• Calling line Identity (CLI) (i.e. Calling phone number)

• Date

• Time

• Calling party name (CPN)

• Call Type

• First Called Line Identity

• Type of forwarded call

• Reason for absence of Calling Line Identity

• Reason for absence of Calling Party Name

DTMF

The Caller ID transmitted by DTMF signal has two signal sequences:

The Caller ID is transmitted between the first ring and the second ring signal. The signal sequence

is as follows:

The Caller ID is following a Loop Current Reversal signal, and the ring signals are following the

Caller ID. The signal sequence is as follows:

Caller ID

1st Ring 2nd Ring 3rd Ring

LC Reversal

Caller ID

1st Ring 2nd Ring

 Caller ID

 134

The Caller ID transmitted by DTMF signal has the following format:

<D> CallerPhoneNumber <C>

If the caller number is 2219-5499, the received Caller ID string will be D22195499C. The digit ‘D’

indicates the starting character of the caller phone number. The ‘C’ digit indicates the ending

character of the caller phone number.

Enabling the Caller ID feature

Applications can enable the Caller ID feature on the specified channel to process Caller ID

information as it is received with an incoming call. For applications, after a channel is opened via

vocOpenChn() function, the default Caller ID feature is disabled. Applications should call the

vocSetChnParam() function with CP_CALLERID parameter to enable the Caller ID feature on the

specified channel. The more detail usage of vocSetChnParam() function, please refer to the

functional description. Driver cannot handle the FSK and DTMF detections at the same time,

applications only can choose one detection method for each channel.

The vocWaitRingEx() function allows applications to wait for a specified number of rings and

returns the caller’s phone number.

The vocGetCallerID() function allows applications to retrieve the Caller ID information if available.

For those applications which use FSK method, please note that the seizure count of CallID signal

could be adjusted by the DSPCMD.INI under Windows directory as follows:

[VOCLIB]

CIDSeizure=XXX, the default setting is 280. Try to lower value if your application did not receive

caller ID. For example, you can try if 280, 270, 260... works.

Example

The example program code listed below describes how to enable the Caller ID feature and retrieve

the Caller ID string on the specified channel:

HCHN hChn;

char CallID[MAX_CID_LENGTH];

Caller ID

 135

// Open a channel

vocOpenChn(&hChn, ANY_CHN, NULL);

// Enable the caller ID feature on the specified channel

// CPX_??? = CPX_FSK for FSK detection

// CPX_??? = CPX_DTMF for DTMF detection

vocSetChnParam(hChn, CP_CALLERID, CPX_???);

//WaitRing:

// Wait for incoming call and off-hook the channel if number of ring reached

vocWaitRingEx(hChn, 2, IO_HOOK_OFF, WT_INFINITE, CallID);

// Caller ID string is available in CallID buffer

printf(“\n\rCaller ID = %s”, CallID);

:

:

// Playing voice prompt

vocPlayFile(hChn, “greet.wav”, 0, DT_ALL, DM_SYNC);

:

:

:

// Hang up the channel

vocSetHook(hChn, IO_HOOK_ON, DM_SYNC);

// Go back and wait for next call.

goto WaitRing;

/

 ADSI

 136

ADSI (Analog Display Services Interface)

Overview

To be an IVR Server for ADSI applications, the Plus-series voice boards contains the following

features:

• Voice Prompt

• Detects DTMF signals for users’ inputs and acknowledgment (ACK) tone

• Generates CPE Alert Signal (CAS) tone

• Demodulates 1200-baud FSK (V.23) modem data

• Transmits 1200-baud FSK (V.23) modem data

The modem-like protocol based on Frequency Shift Keying (FSK) is half-duplex. Applications can

transmit or receive an ASCII string or binary data directly. The channel seizure of FSK frame and

CAS tone are programmable to meet the communication protocol with remote devices. The

available function calls for ADSI handshake are listed below:

adsiCAS() Generates a CAS tone to remote devices and waits for an ACK tone.

adsiSetParam() Changes channel’s seizure signal and CAS tone settings.

adsiRecvFrame() Receives a V.23 FSK frame.

adsiXmitFrame() Transmits a V.23 FSK frame.

The following function calls will possibly use for an ADSI server application:

vocWaitRing() Waiting for incoming calls.

vocSetHook() Controls the phone line.

vocGetDT() Collects digits from the channel ’s DTMF queue.

vocClearDT() Clears the channel’s DTMF queue.

vocPlayFile() Plays back the voice file(s).

vocPlayTone() Generates a single or dual frequency tone.

Frame Format

A V.23 FSK frame has the following format:
Seizure Signal Mark Signal Message

10*n bits m bits x bytes

ADSI

 137

Seizure Signal The Seizure Signal is used to synchronize the FSK data and indicates the

starting signal of a FSK frame. The seizure signal is a series of alternating 0 and

1 bits. For an ADSI frame protocol, the default number of alternating bits is 50 (i.e.

25 bit 1 and 25 bits 0). It can be programmable by calling the adsiSetParam()

function. To prevent from using the seizue signal, set the alternating bits to zero.

Mark Signal The Mark Signal is used to separate the seizure signal and message block. The

mark signal is a series of at least 55 bits 1 (stop bit) to indicate no data

transmission.

Message The Message is the real data that sender wants to transmit. The definition for this

message block is depending on the requirements of application. In general, the

Message block can be divided into the following fields:

Messag

e
Type

Message
Length

Message
Data

Check
Sum

Message Type

The Message Type is a single binary byte. The value depends on the

application. (To prevent from a conflict with seizure signal, don’t set value

0x55 to the message type).

Message Length

The Message Length is a single binary byte (or word) indicating the number

of bytes in the Message block, excluding the Message Type, Message

Length, and CheckSum bytes. (i.e. The total length of Message Data)

Message Data

The Message Data consists of between 0 and 255 bytes, according to the

Message Length field. Any 8-bit value may be sent, depending on the

requirements of the application.

CheckSum

The CheckSum consists of a single byte equal to the two’s complement sum

of all bytes starting from the Message Type up to the end of the message

block. Carry from the most significant bit is ignored. The receiver must

 ADSI

 138

compute the 8-bit sum of all Message block bytes and CheckSum byte, and

the result must be zero.

Note: The Seizure and Mark Signals will automatically be added to the ADSI frame for the

transmission function. These signals will also be removed from the ADSI frame for the

receiving function. If the seizure signal is not applied for the ADSI protocol, applications

can set the alternating bits of seizure signal to zero for receiving and transmission

functions.

FSK Modulation and Demodulation

The standard FSK transmission frequencies are listed below:

Modem Standard Carrier (Hz) 1 (Mark) (Hz) 0 (Space) (Hz)

V.23 1700 1300 2100
Bell 202 1700 1200 2200

The Plus-series voice boards are capable of decoding data transmitted in either V.23 or Bell 202

1200 baud standards with 1 start, 8 data and 1 stop bit per symbol. The FSK modem data is

decoded using digitial quadrature demodulation techniques. In order to detect the different FSK

frame, the channel seizure of receiving frame is programmable.

The FSK transmission frequencies for Plus-series voice boards are using 1275Hz and 2125Hz.

Both the V23 and Bell 202 standards are close enough to demodulate these frequencies no matter

which standard is actually being used. The channel seizure for a transmission frame is

programmable, and the mark signal consists of 60 bits 1.

Example

The example program code listed below describes how to communicate with the remote device

using the following protocol:

ADSI

 139

#define DATA_LEN 20

typedef struct tagXmitFrame {
 BYTE bType;
 BYTE bLength;
 BYTE bData[DATA_LEN];
 BYTE bCS;
 } XMITFRAME;

HCHN hChn;
XMITFRAME Frame;

// Open a channel
vocOpenChn(&hChn, ANY_CHN, NULL);

//WaitRing:
// Wait for incoming call, and off-hook the channel if number of ring reached
vocWaitRing(hChn, 1, IO_HOOK_OFF, WT_INFINITE);

// Generates a CAS and waits for ACK tone (DTMF digit “A”)
if (adsiCAS(hChn, 3000, DT_A, DM_SYNC) != E_OK) {
 //Process error;
 }
switch (vocGetLastTerm()) {
 case EVT_END:
 break;
 case EVT_MAXTIME:
 // Time-out, no ACK tone detected.
 goto Error;
 break;
 case EVT_GTD:
 // Caller has hanged up the line already.
 goto HangUp;
 break;
 default:
 goto Error;
 break;
 }

//Prepare Frame
Frame.bType =0;
Frame.bLength = DATA_LEN;
// Fill frame data into Frame.bData
 :
Frame.bCS = adsiCheckSum(&Frame, sizeof(XMITFRAME)-1); // -1 is used to exclude the CheckSum byte.
// Frame is ready to trabnsmit.

// Transmit a frame.

CAS

ACK

Data (FSK)

ACK

IVR

Server

Remote

Device

 ADSI

 140

if (adsiXmitFrame(hChn, &Frame, sizeof(XMITFRAME), DM_SYNC) != E_OK) {
 //Process error;
 }
switch (vocGetLastTerm()) {
 case EVT_END:
 break;
 case EVT_GTD:
 // Caller has hanged up the line already.
 goto HangUp;
 break;
 default:
 goto Error;
 break;
 }

// Waiting for ACK tone (DTMF digit “A”);
if (adsiCAS(hChn, 3000, DT_A, DM_NOCAS|DM_SYNC) != E_OK) {
 //Process error;
 }
switch (vocGetLastTerm()) {
 case EVT_END:
 break;
 case EVT_MAXTIME:
 // Time-out, no ACK tone detected.
 goto Error;
 break;
 case EVT_GTD:
 // Caller has hanged up the line already.
 goto HangUp;
 break;
 default:
 goto Error;
 break;
 }

:
:
// Hang up the channel
vocSetHook(hChn, IO_HOOK_ON, DM_SYNC);
// Go back and wait for next call.
goto WaitRing;

The example program code listed below describes how to communicate with the remote device

using the following protocol:

CAS

ACK

Data (FSK)

DACK (FSK)

IVR

Server

Remote

Device

ADSI

 141

#define DATA_LEN 20

typedef struct tagXmitFrame {
 BYTE bType;
 BYTE bLength;
 BYTE bData[DATA_LEN];
 BYTE bCS;
 } XMITFRAME;

typedef struct tagRecvFrame {
 BYTE bType;
 BYTE nCC;
 BYTE bLength;
 BYTE bData[DATA_LEN];
 BYTE bCS;
 } RECVFRAME;

HCHN hChn;
XMITFRAME XmitFrame;
RECVFRAME RecvFrame;
WORD wMsgSize;

// Open a channel
vocOpenChn(&hChn, ANY_CHN, NULL);

//WaitRing:
// Wait for incoming call, and off-hook the channel if number of ring reached
vocWaitRing(hChn, 1, IO_HOOK_OFF, WT_INFINITE);

// Generates a CAS and waits for ACK tone (DTMF digit “A”)
if (adsiCAS(hChn, 3000, DT_A, DM_SYNC) != E_OK) {
 //Process error;
 }
switch (vocGetLastTerm()) {
 case EVT_END:
 break;
 case EVT_MAXTIME:
 // Time-out, no ACK tone detected.
 goto Error;
 break;
 case EVT_GTD:
 // Caller has hanged up the line already.
 goto HangUp;
 break;
 default:
 goto Error;
 break;
 }

//Prepare Frame
XmitFrame.bType =0;
XmitFrame.bLength = DATA_LEN;
// Fill frame data into XmitFrame.bData
 :
XmitFrame.bCS = adsiCheckSum(&XmitFrame, sizeof(XMITFRAME)-1); // -1 is used to exclude the CheckSum byte.
// Frame is ready to trabnsmit.

// Transmit a frame.
if (adsiXmitFrame(hChn, &XmitFrame, sizeof(XMITFRAME), DM_SYNC) != E_OK) {
 //Process error;
 }
switch (vocGetLastTerm()) {
 case EVT_END:
 break;
 case EVT_GTD:
 // Caller has hanged up the line already.
 goto HangUp;
 break;
 default:

 ADSI

 142

 goto Error;
 break;
 }

// Receive a frame
if (adsiRecvFrame(hChn, &RecvFrame, sizeof(RECVFRAME), &wMsgSize, 5000, DM_SYNC) != E_OK) {
 //Process error;
 }
switch (vocGetLastTerm()) {
 case EVT_END:
 break;
 case EVT_ERR:
 // Check sum error.
 break;
 case EVT_GTD:
 // Caller has hanged up the line already.
 goto HangUp;
 break;
 default:
 goto Error;
 break;
 }

:
:
:
// Hang up the channel
vocSetHook(hChn, IO_HOOK_ON, DM_SYNC);
// Go back and wait for next call.
goto WaitRing;

Voice Logging System

 143

Voice Logging System

Overview
Plus-4R and Plus-8R boards are designed for Voice Logging system. A PC system can have up to
16 boards (128 channels) installed. Every channel on the board can connect to a PBX extension or
telco line to detect the line status and record the call conversation.

Line Connection
Plus-8R and Plus-4R boards must connect to analog phone lines. Two methods (in serial or in
parallel) are provided to connect to PBX extensions or telco lines.

Serial Connection：
When the voice Logging System is in serial connection with PBX extensions or telco lines, the
system is able to detect incoming rings, DTMF tones and the on-hook/off-hook status of phone sets
(Loop Current Detection).

Parallel Connection：
When the voice Logging System is in parallel connection with PBX extensions or telco lines, the
system is able to detect incoming rings and DTMF tones. The system can not detect the
on-hook/off-hook status of phone sets (Loop Current Detection).
The LINE and PHONE jacks of the boards use RJ57 phone jacks and the line connection is like the
following:

 Voice Logging System

 144

The LINE and PHONE jacks of the boards use RJ57 phone jacks and the line connection is like the
following:

Programming Tips
1. How to detect the line signals to start voice recording?

Application can detect the following line signals to activate the recording function:
• Ring Signal
• DTMF Signal
• Tone Signal
• Loop Current Signal

In order to detect the line signals without actually off-hook the line, application should call
vocSetHook() function with IO_HOOK_DUMMY parameter to put channel in on-hook state but
can detect the line signals. If application want to detect the loop current signal, the
vocSetChnParam() function should be called with CP_HANDSET parameter. To initialize all the
channels for the voice Logging System, the following functions should be called:

// Open a channel
vocOpenChn(&hChn, ANY_CHN, NULL);

// Enable the loop current detection on the specific channel
vocSetChnParam(hChn, CP_HANDSET, CPX_ENABLE);

// Set channel to a dummy off-hook state
vocSetHook(hChn, IO_HOOK_DUMMY, DM_SYNC);

// Set CST mask and clear CST queue.
vocSetCSTMask(hChn, CSM_RING | CSM_DIGIT | CSM_SILON |CSM_SILOFF | CSM_HANDSET);

2. How to detect the line signal to stop voice recording?

Voice Logging System

 145

Once the recording function was started, application should detect the following line signals to
stop recording:

• Long silence time
• Loop current signal

In order to detect the line signals while voice is recording, the vocRecordFIle() function should
be called in asynchronous model. After the recording function is issued, application calls
vocWaitEvent() and vocWaitCST() function in a while loop to retrieve the terminated event of
recording function and the channel status. To implement this function, the sample program code
is listed below:

// Start recording with DM_NOGTD to prevent from the unexpected terminated events.
vocRecordFile(hChn, RandomFile, dwRecTime, 0, (WORD) (VM_ADPCM | VM_SR6 | DM_NOGTD|DM_ASYNC));
while(1) {
 if (vocWaitCST(hChn, &Cst, 100) == E_OK) {
 switch (Cst.wStatus) {
 case CST_RING: //Incoming ring is detected.
 :
 break;
 case CST_DIGIT: //DTMF is detected.
 :
 break;
 case CST_SILOFF: //Tone is detected.
 :
 break;
 case CST_SILON: //Silence is detected.
 :
 break;
 case CST_HANDSET: //Handset status is changed.
 :
 break;
 }
 }
 if (vocWaitEvent(hChn, &Event, 100) == E_OK) {
 :
 break;
 }

 }

//Stop recording
vocStopChn(hChn, DM_SYNC);

3. How to monitor the call conversation through another channel?

While a line is connected and recording function is in progress, application can call
vocMonitorChn() function to monitor the line. It can output the call conversation to another
channel, so user can hear the conversation from speaker or remote phone set. For more detail
information about vocMonitorChn() function, please refer the function manual.

Example
The example program code listed below describes how to detect the line signal and record the
conversation on the specific channel:

HCHN hChn;
CST Cst;

// Initialize channel

// Open a channel
vocOpenChn(&hChn, ANY_CHN, NULL);

 Voice Logging System

 146

// Enable the loop current detection on the specific channel
vocSetChnParam(hChn, CP_HANDSET, CPX_ENABLE);

// Set channel to a dummy off-hook state
vocSetHook(hChn, IO_HOOK_DUMMY, DM_SYNC);

// Set CST mask and clear CST queue.
vocSetCSTMask(hChn, CSM_RING | CSM_DIGIT | CSM_SILON | CSM_SILOFF | CSM_HANDSET);

Start_Loop:

// Retrieve the line signal

while(1) {
 if (vocWaitCST(hChn, &Cst, 50) != E_OK) continue;
 iFlag = 0;
 switch (Cst.wStatus) {
 case CST_RING: //Incoming ring signal is detected.
 ltRing = GetNowLongTime();
 if (!(iTrigger & TRG_RING)) break;
 dwRingTick = Cst.dwData;
 iFlag |= FG_INCALL+ FG_NEEDRECORD;
 break;
 case CST_DIGIT: //DTMF is detected.
 if (!(iTrigger & TRG_DTMF)) break;
 iFlag |= FG_OUTCALL + FG_NEEDRECORD;
 break;
 case CST_SILOFF: //Tone is detected.
 if (!(iTrigger & TRG_TONE)) break ;
 iFlag |= FG_NEEDRECORD;
 break;
 case CST_HANDSET: //Handset Status is changed.
 if (!(iTrigger & TRG_HANDSET)) break;
 if (Cst.dwData == 0) break;
 if ((GetNowLongTime() - ltRing) <= (DWORD)giRingIDD) {
 iFlag |= FG_INCALL;
 }
 //Indicates handset trigger.
 iFlag |= FG_HANDSET + FG_NEEDRECORD;
 break;
 }
 if (iFlag & FG_NEEDRECORD) break;
 }

Start_Record:

// Start recording

// Initialize local data
FillMemory((char *)bDTMF, PHONENO_SIZE, 0);
inxDT = 0;
ltStartConnect = ltStartSilence = GetNowLongTime();
if (vocGetChnIO(hChn)&ST_TONE) iFlag &= ~FG_SILENT;
else iFlag |= FG_SILENT;

// Get a Random filename
GetRandomFilename(RandomFile);

// Invoke a recording function in asynchronous model.
DWORD dwRecTime = giRecNotifyTime*60*1000;
if (vocRecordFile(hChn, RandomFile, dwRecTime, 0, (WORD) (VM_ADPCM | VM_SR6 | DM_NOGTD|
 DM_ASYNC)) != E_OK) {
 iFlag |= FG_EXIT;
 }

while(1) {
 if (iFlag&FG_EXIT) break;

Voice Logging System

 147

 // Retrieve the channel status
 if (vocWaitCST(hChn, &Cst, 100) == E_OK) {
 switch(Cst.wStatus) {
 case CST_RING: //Incoming ring is detected.
 if (!(iTrigger & TRG_RING)) break;
 if ((Cst.dwData - dwRingTick) > (DWORD)giRingIDD) {
 // A new call is coming while system does not end the last call.
 iFlag |= FG_EXIT+FG_RINGRESTART;
 }
 dwRingTick = Cst.dwData;
 break;
 case CST_DIGIT: //DTMF is detected.
 // When the recording function was activated by a loop
 // current signal. System will assume it is a out-bound
 // call, if a DTMF is detected in 5 seconds
 If ((GetNowLongTime() - ltStartConnect) < 5000) {
 if (iFlag & FG_HANDSET) {
 if ((iFlag&(FG_INCALL+FG_OUTCALL)) == 0)
 iFlag |= FG_OUTCALL;
 }
 }
 // Save the DTMF tone in buffer.
 if (PHONENO_SIZE > inxDT) {
 bDTMF[inxDT++]= vocReadDT(hChn);
 }
 break;
 case CST_SILOFF: //Tone is detected.
 iFlag &= ~FG_SILENT;
 break;
 case CST_SILON: //Silence is detected.
 iFlag |= FG_SILENT;
 // Reset the silence time for long silence detection.
 ltStartSilence = GetNowLongTime();
 break;
 case CST_HANDSET: //Handset status is changed.
 if (!(iTrigger & TRG_HANDSET)) break;
 if (Cst.dwData == 0) {
 // Handset was hang-up, Stop recording now.
 iFlag |= FG_EXIT;
 break;
 }
 break;
 }
 }

 if (!(iTrigger & TRG_HANDSET)) {
 if (iFlag&FG_SILENT) {
 if ((GetNowLongTime() - ltStartSilence) >= 7000) {
 iFlag |= FG_SILOVER;
 // Stop recording if long silence time is detected.
 break;
 }
 }
 }
 if (vocWaitEvent(hChn, &Event, 100) == E_OK) {
 if (Event.wEvent == EVT_MAXTIME) {
 // Max recording time reached.
 }
 break;
 }
 }

//Stop recording
vocStopChn(hChn, DM_SYNC);

//Collect all the remainder digits
if (PHONENO_SIZE > inxDT) {
 vocGetDT(hChn, & bDTMF[inxDT], (WORD)(PHONENO_SIZE-inxDT), 0, 0, DM_SYNC);
 }

 Voice Logging System

 148

// Calculate the connect time of this call. Ignore it If the connect time is less than 1000 ms.
iConnectTime = (int)(GetNowLongTime() - ltStartConnect);
if (iConnectTime <= 1000) {
 remove(RandomFile);
 iFlag |= FG_IGNORE; //Ignore this record.
 }

// If the recording is stopped by long silence, application cut the silent data of voice file to save the disk space.
if (iFlag & FG_SILOVER) {
 iConnectTime -= iSilTime;
 if (vocCutWaveFi le(RandomFile, (WORD)iSilTime) <= 1) {
 remove(RandomFile);
 iFlag |= FG_IGNORE; //Ignore this record.
 }
 }

// Add to database if necessary
if (!(iFlag & FG_IGNORE)) AddToDataBase();

// Need to record at once.
if (iFlag & FG_RINGRESTART) {
 // A new call is detected
 iFlag = FG_INCALL;
 goto Start_Record;
 }

// Set CST mask again to clear CST queue.
vocSetCSTMask(hChn, CSM_RING | CSM_DIGIT | CSM_SILON | CSM_SILOFF | CSM_HANDSET);

// Go back to retrieve the line signal.
goto Start_Loop;

SCBus Application

 149

SCbus Application

SCbus Concept
The SCbus is a real -time, high -speed, time division multiplexed (TDM) communications bus that
operates across a 4.096 Mbps stream and provides 1024 time slots for transmission of digital
information between SCbus products. The SCbus allows high-density systems to efficiently share
resources so that multiple technologies can be connected to each port as needed.

Each SCbus product consists of several devices. Each of these devices can communicate via the
SCbus with any other device connected to the SCbus. For example:

� a PLUS-4LVSC board provides 4 on-board analog loop start interface devices and 4 voice

devices, for a total of 8 devices communicating over the SCbus.

All devices connected to the SCbus have a transmit (TX) channel and a receive (RX)(listen)
channel. At system initialization, each transmit channel is assigned to a specific and unique SCbus
time slot. This transmit channel assignment cannot be changed by the application.

Since all transmit channels are pre-assigned, routing an SCbus device only requires connecting the
receive (listen) channel of the device to an SCbus time slot. The connected device then listens to all
data transmitted over that SCbus time slot. This receive channel can be moved (disconnected and
connected) to a different SCbus time slot at any time by the application.

Two device types are provided on SCbus:
� Network Devices include analog (Channel) or digital (T-1/E-1) network interface.
� Resource Devices include voice, fax, AVR, TTS.

SCbus Product Overview
� PLUS-4LVSC board has 4-channel voice resource with on-board analog loop start interface. It

occupies 8 time slots on SCbus, 4 for analog device and 4 for voice device.

The time slot assignment can be configured by Diag32 program and the settings will store in the
DSPCMD.INI file with the following format:

[VocLib]
StartTimeSlot =yyy

yyy defines the starting time-slot number (from 0 to 1023) for Plus SCbus products.

For voice boards with on-board analog devices, a voice device and an analog device comprise a
single channel. To retrieve the transmitting time slots of analog device and voice device,

To retrieve the transmitting time-slot of voice device on PLUS-4LVSC board:

vocOpenChn(&hChn, 0, NULL);
vocGetXmitSlot(hChn, &pTS);

To retrieve the transmitting time-slot of analog device on PLUS-4LVSC board:

vocOpenChn(&hChn, 0, NULL);
anaGetXmitSlot(hChn, &pTS);

 SCBus Application

 150

To retrieve the transmitting time-slot of fax device on PLUS-4LVSC board:

faxOpenChn(&hChn, 0, NULL);
faxGetXmitSlot(hChn, &pTS);

SCbus Routing Functions
SCbus routing functions provide the flexibility to connect together any two devices attached to the
SCbus and to allow any number of SCbus devices to listen to a single transmitting device. This
flexibility enables:

� Communications between voice devices and analog or digital network interface devices .
� Rerouting (switching) a voice device from one network interface device to another.
� Moving (rerouting) shared resources, such as FAX devices, from one network interface device

to another.
� Connecting together 2 network interface devices.
� Connecting any number of incoming calls on analog or digital network interface devices to a

single SCbus device.

Conceptually, think of all SCbus time slots as transmit time slots and that at system initialization, the
transmit channel of each device connected to the SCbus is assigned to a unique and separate
SCbus time slot. Then routing is merely connecting the receive (listen) channel of any SCbus
device to the transmit channel of another SCbus device. In this manner, any number of devices can
listen to the transmissions of another SCbus device.

The application can also disconnect (unlisten) the receive channel from the SCbus. When
disconnected, no data is received by the device from the SCbus.

The V-Link32 Development Kit supports the following SCbus routing functions to provide the ability to
program each phase of connecting or disconnecting the receive channel of a device to the transmit
channel of another device or to build your own convenience functions.

Analog Device:

anaGetCTInfo() Returns information about an analog device.

SCBus Application

 151

anaGetXmitSlot() Returns the SCbus time slot information connected to the transmit
channel of the specified analog device.

anaListen() Connects the listen (receive) channel of the specified analog device to
an SCbus time slot.

anaUnlisten() Disconnects the listen (receive) channel of the specified analog device
from an SCbus time slot.

Voice Device:
vocGetCTInfo() Returns information about a voice device.
vocGetXmitSlot() Returns the SCbus time slot information connected to the transmit

channel of the specified voice device.
vocListen() Connects the listen (receive) channel of the specified voice device to an

SCbus time slot.
vocUnlisten() Disconnects the listen (receive) channel of the specified voice device

from an SCbus time slot.

Using SCbus Routing Functions
To route channels using individual SCbus routing functions, perform the following:

1. issue a ???GetXmitSlot() call for the first device. This function returns the SCbus time slot
information contained in a TSINFO structure that includes the number of the SCbus time slot
connected to the transmit channel of the first device; for example, for the transmit channel of
voice device 14.

2. issue a ???Listen() call for the second device. This function connects the listen channel of

the second device to the transmit channel of the first device by using the information
contained in the TSINFO structure; for example; the listen channel of digital T-1 device 12 to
the transmit channel of voice device 14.

3. Issue a ???GetXmitSlot() call for the second device. This function returns the SCbus time

slot information contained in a TSINFO structure that includes the number of the SCbus time
slot connected to the transmit channel of the second device; for example, the transmit channel
of digital T-1 device 12.

4. Issue a ???Listen() call for the first device. This function connects the listen channel of the

first device to the transmit channel of the second device by using the information contained in
the TSINFO structure; for example; the listen channel of voice device 14 to the transmit
channel of digital T-1 device 12.

When these functions return, full duplex communications between the devices will be established.
Throughout this process, the actual SCbus time slot number is never needed to code the
application.

To disconnect devices, the listen channel of each device must be disconnected from the SCbus by
issuing a ???Unlisten() call for each device. When the function returns, the listen channel of the
device will be disconnected from the SCbus and no data will be received by the device.

NOTE: When moving the receive (listen) channel of a device to a different SCbus time slot,
the ???Listen() function automatically disconnects the device from the existing SCbus time slot
connection thus eliminating the need to issue a ???Unlisten() function call.

Examples of SCbus Routing Resources
The examples illustrate routing between resource devices located on the following SCbus products,
see Figure 1. System Initialization SCbus Time Slot Assignments:

 SCBus Application

 152

� a Plus-4LVSC board with 4 analog loop start interface devices and 4 voice devices.
� a D/240SC-T1 boards; each D/240SC-T1 board provides 24 digital channels (T-1 time slots)

and 24 voice devices.

{

int chdev; /* D/240SC-T1 voice channel handle */
HCHN hChn; /* Plus-4LVSC voice channel handle */
SC_TSINFO sc_tsinfo; /* time slot information structure */
Long scts; /* SCbus time slot */

/* Open the 2nd voice channel of D/240SC-T1 board. */
if ((chdev = dt_open("dxxxB1C2", 0)) == -1) {

printf("Cannot open channel dxxxB1C2. errno = %d", errno);
exit(1);
}

/* Open the 2nd voice channel of Plus-4LVSC board. (voice channel 1). */
if (vocOpenChn(&hChn, 1, NULL) != E_OK) {

printf("Cannot open channel 1. errno = %d", errno);
 exit(1);
 }
.
.
.
/* Initialize the SC_TSINFO structure with the necessary information. */
sc_tsinfo.sc_numts = 1;
sc_tsinfo.sc_tsarrayp = &scts;

/* Get the transmitting time slot of the 2nd channel of D/240SC-T1 board. */
if (dt_getxmitslot(chdev, &sc_tsinfo) == -1) {

printf("dt_getxmitslot() failed: Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }

/* Make the 2nd channel of Plus-4LVSC board listen to the SCbus time slot that
 the 2nd channel of D/240SC-T1 board is transmitting on.*/
if (anaListen(hChn, &sc_tsinfo) != E_OK) {

printf("anaListen() failed: Error Code = %u", vocGetLastErr(hChn));
 exit(1);
 }

/* Get the transmitting time slot of the 2nd channel of Plus-4LVSC board. */
if (anaGetXmitSlot(hChn, &sc_tsinfo) != E_OK) {

printf("anaGetXmitSlot() failed: Error Code = %u", vocGetLastErr(hChn));
exit(1);

 }
/* Make the 2nd channel of D/240SC-T1 board listen to the SCbus time slot that
 the 2nd channel of Plus-4LVSC board is transmitting on.*/
if (dt_listen(chdev, &sc_tsinfo) == -1) {

printf("dt_listen() failed: Error message = %s", ATDV_ERRMSGP(chdev));
exit(1);

 }
.
.
.
}

FAQ

 153

Frequently Asked Questions

1. How to make sure voice card is working after installed?
Ø Run program from “Start”->”Programs ”->”V-Link32 Development Kit”->”Line Detector”. If

“Waveform driver is not installed” message appears, the installation was failed. If Line
Detector program could be executed, then the card is working.

2. How to fix the problem of “Waveform driver is not installed”?
Ø Check if hardware’s setting matches with software’s settings:
ü Hardware settings: read “Installation Manual” to find out the jumper settings for IRQ, IO port

and Shared memory address. The factory settings are IRQ(5), IO(360) and Shared
memory(D000).

ü Software settings:
² For NT user:

Run program from “Start ”->”Programs”->”V-Link32 Development Kit”->”Voice Settings” to
configure the hardware settings.

² For Win98 user:
Run program from “Start”->”Settings”->”Control Panel”->”System”->”Device Manager”.
Look at “Audio voice cards” class and select “ADmore voice card”. Double click to view the
resources.

Ø Check card’s resource conflicts with other devices:
ü For NT user:

Run program from “Start”->”Programs”->”Administrative Tools (Common)”->”Windows NT
Diagnostics”. Select “Resources” tab to overview all the resources including IRQ, IO Ports
and Memory are occupied by existing devices in the system. The device name for our voice
card is “TPLUS”. You can look at if the resources for TPLUS is conflicting with others.

ü For Win98 user:
Run program from “Start”->”Settings”->”Control Panel”->”System”->”Device Manager”.
Look at “Audio voice cards” class and select “ADmore voice card”. Double click to view the
resources status. If any IRQ, IO and Memory conflicts, there will be certain error sign
showing.

ü If voice card resources does conflicts, please change both software and hardware settings
for voice card, or modify the resources for conflicting device.

Ø Make sure IRQ reserved for ISA card: when booting the system, enter system BIOS, choose
“PNP/PCI setting”. If your voice card is set at IRQ5, then the IRQ 5 setting in BIOS should be
reserved for “ISA card”.

3. If V-Link32 is workable on Windows/95?
Ø The answer is NO because of different device driver support. If user wishes to use Win95

platform, please use either AG16 or 16 Bits development kit.

4. What developing language could be used for V-Link32?
Ø V-Link32 API is the same as Windows API which is written in Dynamic Link Library. The most

common used languages are Microsoft C++, Borland C++ Builder, Delphi and Visual Basic.

5. How to use V-Link32 with Microsoft C++?
Ø Note 1: refer to “VC” sample directory which is located under V-Link32 installed directory.
Ø Note 2: in code module, include “VOCLIB32.H” which is located in “INC” directory.
Ø Note 3: before start project link, add “VOCLIB32.LIB” which is located in “LIB” directory.

6. How to use V-Link32 with BCB(Borland C Builder)?
Ø Note 1: refer to “BCB ” sample directory which is located under V-Link32 installed directory.
Ø Note 2: in code module, include “VOCLIB32.H” which is located in “INC” directory.
Ø Note 3: before start project link, add “VOCLIB32.LIB” which is located in “LIB” directory.

 FAQ

 154

7. How to use V-Link32 with VB(Visual Basic)?
Ø Note 1: refer to “VB” sample directory which is located und er V-Link32 installed directory.
Ø Note 2: Add both “VOCLIB32.BAS” and “COMMON.BAS” into projects, which is located under

“LIB” directory.

8. How to use V-Link32 with Delphi?
Ø Note 1: refer to “Delphi” sample directory which is located under V-Link32 installed directory.
Ø Note 2: Add “VOCLIB32.PAS” into projects, which is located under “LIB” directory.

9. What is the first step to write V-Link32 application program?
Ø Before any operation to the channel on the voice card, you must call vocInitDriver() to initialize

device driver, then call vocOpenChn() to get a channel handle for further operation. If the
channel is no need to use, call vocCloseChn() to close and free channel resources.

10. What is the difference using “Synchronous” and “Asynchronous” program model?
Ø If application program specifies “Synchronous” model, then calling into V-Link32 API will block the

execution until completes its function. Vice versa, “Asynchronous” model, the API will return
immediately after starting its function by creating a thread running in the background. For BCB
and VC project, it is free to use either synchronous or asynchronous mode, because in C++,
the application is able to create thread for their need. But for VB project, the most common
implementation is to use timer interval to do their tasks, therefore, the “Asynchronous” model is
the only way to do.

11. What is event management for during V-Link32 API call?
Ø Event is as communication data between application program and V-Link32 inside. Whenever

application wants to know if the asynchronous function is done, the application can call
vocWaitEvent() to get function result, such as EVT_END means function completes,
EVT_STOP means function was stop by user, EVT_TERMDT means function is stop by input
digit, or vocWaitEvent() returns E_TIMEOUT means the function is still going on, but the
waiting time is up.

12. What voice file format are supported for voice card?
Ø 6K and 8K sampling rate, and u-Law PCM, ADPCM and Windows PCM, 8Bit and mono

channel.

13. What is the smallest file size to record voice into a file?
Ø 6K sampling rate, 4 Bits ADPCM, i.e. 3000 bytes per second. You can specify

VM_ADPCM+VM_SR6 as wMode parameter in vocRecordFile().

14. How to play a voice file, and is terminated by input digit(s)?
Ø Using vocPlayFile(hChn, “Greet.wav”, 0, DT_9+DT_*....) means “Greet.wav” file will be played,

and terminated by either “9” or “*” digit is pressed. If the application program requires to know
which digit was pressed(“9” or “*”), just call vocGetTermDT() to retrieve exact pressed digit.

15. How to detect Hang-up tone or a specific tone?
Ø To use GTD(Global Tone Detection) which is set in “Line Detector Program(Diag32.exe)”, you

can specify the tone frequency, silent off time period, silent on time period, and Tone ID.
Besides, you can learn the tone setting in Diag32.exe by following its recommended steps.
Once the tone characteristic is set and happens, the V-Link32 API will return EVT_GTD to let
application know specific tone (by tone ID) was detected. Usually, EVT_GTD is often used as
hang up tone.

16. How to generate a tone?
Ø To use vocPlayTone() to generate a tone, you can specify tone frequency (from 0~4KHz) and

also duration for the time period.

FAQ

 155

17. How to trun on speaker to listen to channel status?
Ø Use vocSetChnIO(hChn, IO_SPK_ON).

18. How to receive DTMF digit(s)? What is the difference for vocGetDT() and vocReadDT()?
Ø After channel is off hook, voice driver is keep on monitoring DTMF digit, and place it into a

internal queue if any. Using vocGetDT(), you can specify the condition of maximum time to
wait, maximum digits to wait and also certain digit(s) to wait, and return different event to let
application know what happened, i.e. EVT_MAXTIME, EVT_MAXDTMF,and EVT_TERMDT.
Regarding vocReadDT(), just simply check if the DTMF queue contains digit(s). If yes, pick
one out for each function call, or return ZERO if none exists in the queue.

19. How to know the dialing result?
Ø Application call vocDial() to do outbound call, and after vocDial() function is completed,

vocGetCAR() function will get you know the result, such as “No answer”, “Busy”, “Connected”
or “No Dial Tone”.

20. What is call progress monitor?
Ø Let’s analyze the process in vocDial() which initially check if the channel is off hook or not, if

not, get off hook first. Then starts to monitor the line signal including, it may appear ring bac k
tone, busy tone, line noise(certain silent off), or human voice if people pick up the line. For
example, if voice card receives cadenced ring back for a time period, then this situation will be
judged as “No answer”. The same implementation happens on “Busy” result. For “No Dial
Tone” is because voice card is not able to detect predefined dial tone. You may ask what the
criteria to detect human voice is? The characteristic for human voice is that we don’t have
certain fixed frequency, not like busy tone owning 480/620Hz characteristic.
Therefore, to detect dial tone, busy tone, or ring back tone is the key factor to successfully
know the dial out result. To let voice card very clearly knows what the busy tone, dial tone or
ring back tone is, you can specify those settings on the “Call Progress Monitor” of “Diag32.exe”.
Of course, we also provide the learning way to know those settings. Besides, for simple usage,
we also provide “Intelligent Call Progress Monitor” which collects most common used settings
for busy tone and ring back tone, so you don’t have to specify those settings unless your
telephony system is not suitable for those settings.

21. What is CST? What is the CST for?
Ø CST means (Channel Status Transition) which provides a way to let application know current

channel status change. The status change includes On/Off hook, Ring, DTMF, Silent On/Off
time, Loop Current reversal/drop(for off-hook in certain telephony system) , Specific tone
happened. One thing to note that before use CST, you have to open each mask for each of
them by calling vocSetCSTMask(), and then calling vocWaitCST() to get above status change.

